3 resultados para Illite

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bentonite, commonly used for liner constructions in waste containment systems, possesses many limitations. Illite or illite containing bentonite has been proposed as an alternative material for liner construction. Their properties in different types of pore fluids are important to assess the long-term performance of the liner. Further, the illite-bentonite interaction occurs and changes their properties. The effect of these interactions is known when the pore fluid is only water. How their properties are modified in electrolyte solutions has been brought out in this paper. The index properties have been studied since they give an indication of their engineering properties. Due to reduction in the thickness of the diffused double layer and consequent particle aggregation in bentonite, the effect of clay-clay interaction reduces in electrolyte solutions. In electrolyte solutions, the liquid limit, the plasticity index, and free swell index of bentonite are lower than illite. The plasticity index of bentonite is further reduced in KCI solution. Clays with a higher plasticity index perform better to retain pollutants and reduce permeability. Hence, the presence of both illite and bentonite ensures better performance of the liner in different fluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The soft clay of Ariake Bay, in western Kyushu, Japan covers several hundred square kilometers. Ariake clay consists of the principal clay minerals namely, smectite, illite, kaolinite and vermiculite, and other minerals in lesser quantity. The percentage of the principal clay, mineral can vary significantly. The percent clay, size fraction and the salt concentration can also vary significantly. In view of the importance of undrained shear strength in geotechnical engineering practice, its behavior has been studied with respect to variation in salt concentration. Basically, two mechanisms control the undrained strength in clays, namely (a) cohesion or undrained strength is due to the net interparticle attractive forces, or (b) cohesion is due to the viscous nature of the double layer water. Concept (a) operates primarily for kaolinitic soil, and concept (b) dominates primarily for montmorillonitic soils. In Ariake clay, different clay minerals with different exchangeable cations and varying ion concentration in the pore water and varying nonclay size fraction are present. In view of this while both concepts (a) and (b) can coexist and operate simultaneously, one of the mechanisms dominates. For Isahaya clay, concept (a), factors responsible for an increase in level of flocculation and attractive forces result in higher undrained strength. Increase in salt concentration increases the remolded undrained strength at any moisture content. For Kubota and Kawazoe clays, concept (b) factors responsible for an expansion of diffuse double layer thickness, resulting in higher viscous resistance, increase the undrained shear strength, that is, as concentration decreases, the undrained strength increases at any moisture content.The liquid limit of Isahaya,a clay increases with increase in ion concentration and a marginal decrease is seen for both Kubota and Kawazoe clays, and their behavior has been explained satisfactorily,.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.