3 resultados para Illinois. Coastal Zone Management Program.
em Indian Institute of Science - Bangalore - Índia
Resumo:
More than half a decade has passed since the December 26th 2004 tsunami hit the Indian coast leaving a trail of ecological, economic and human destruction in its wake. We reviewed the coastal ecological research carried out in India in the light of the tsunami. In addition, we also briefly reviewed the ecological research in other tsunami affected countries in Asia namely Sri Lanka, Indonesia, Thailand and Maldives in order to provide a broader perspective of ecological research after tsunami. A basic search in ISI Web of Knowledge using keywords ``tsunami'' and ``India'' resulted in 127 peer reviewed journal articles, of which 39 articles were pertaining to ecological sciences. In comparison, Sri Lanka, Indonesia, Thailand and Maldives had, respectively, eight, four, 21 and two articles pertaining to ecology. In India, bioshields received the major share of scientific interest (14 out of 39) while only one study (each) was dedicated to corals, seagrasses, seaweeds and meiofauna, pointing to the paucity of research attention dedicated to these critical ecosystems. We noted that very few interdisciplinary studies looked at linkages between pure/applied sciences and the social sciences in India. In addition, there appears to be little correlation between the limited research that was done and its influence on policy in India. This review points to gap areas in ecological research in India and highlights the lessons learnt from research in other tsunami-affected countries. It also provides guidance on the links between science and policy that are required for effective coastal zone management.
Resumo:
Taking the various values ascribed to biodiversity as its point of departure rather many years ago, the present study aims at deriving a conservation strategy for Uttara Kannada. This hilly district, with the highest proportion of its area under forests in South India, is divided into five ecological zones: coastal, northern evergreen, southern evergreen, moist deciduous, and dry deciduous. The heavily-populated coastal zone includes mangrove forests and estuarine wetlands. The evergreen forests are particularly rich in the diversity of plant species which they support - including wild relatives of a number of cultivated plants. They also serve a vital function in watershed conservation. The moist deciduous forests are rich in bird species; both moist and dry deciduous forests include a number of freshwater ponds and lakes that support a high diversity of aquatic birds.Reviewing the overall distribution of biodiversity, we identify specific localities - including estuaries, evergreen forests, and moist deciduous forests - which should be set aside as Nature reserves. These larger reserves must be complemented by a network of traditionally-protected sacred groves and sacred trees that are distributed throughout the district and that protect today, for instance, the finest surviving stand of dipterocarp trees.We also spell out the necessary policy-changes in overall development strategy that should stem the ongoing decimation of biodiversity. These include (1) revitalizing community-based systems of sustainable management of village forests and protection of sacred groves and trees; (2) reorienting the usage-pattern of reserve forests from production of a limited variety of timber and softwood species for industrial consumers, to production of a larger diversity of non-wood forest produce of commercial value to support the rural economy; (3) utilizing marginal lands under private ownership for generating industrial wood supplies; and (4) provision of incentives for in situ maintenance of land-races of cultivated plants - especially evergreen, fruit-yielding trees - by the local people.It is proposed that this broad framework be now taken to the local communities, and that an action-plan be developed on the basis of inputs provided - and initiatives taken - by them.
Resumo:
The reduction in natural frequencies,however small, of a civil engineering structure, is the first and the easiest method of estimating its impending damage. As a first level screening for health-monitoring, information on the frequency reduction of a few fundamentalmodes can be used to estimate the positions and the magnitude of damage in a smeared fashion. The paper presents the Eigen value sensitivity equations, derived from first-order perturbation technique, for typical infra-structural systems like a simply supported bridge girder, modelled as a beam, an endbearing pile, modelled as an axial rod and a simply supported plate as a continuum dynamic system. A discrete structure, like a building frame is solved for damage using Eigen-sensitivity derived by a computationalmodel. Lastly, neural network based damage identification is also demonstrated for a simply supported bridge beam, where the known-pairs of damage-frequency vector is used to train a neural network. The performance of these methods under the influence of measurement error is outlined. It is hoped that the developed method could be integrated in a typical infra-structural management program, such that magnitudes of damage and their positions can be obtained using acquired natural frequencies, synthesized from the excited/ambient vibration signatures.