5 resultados para ISBD Taskforce on Community Engagement
em Indian Institute of Science - Bangalore - Índia
Resumo:
We build dynamic models of community assembly by starting with one species in our model ecosystem and adding colonists. We find that the number of species present first increases, then fluctuates about some level. We ask: how large are these fluctuations and how can we characterize them statistically? As in Robert May's work, communities with weaker interspecific interactions permit a greater number of species to coexist on average. We find that as this average increases, however, the relative variation in the number of species and return times to mean community levels decreases. In addition, the relative frequency of large extinction events to small extinction events decreases as mean community size increases. While the model reproduces several of May's results, it also provides theoretical support for Charles Elton's idea that diverse communities such as those found in the tropics should be less variable than depauperate communities such as those found in arctic or agricultural settings.
Resumo:
1. Host-parasite interactions have the potential to influence broadscale ecological and evolutionary processes, levels of endemism, divergence patterns and distributions in host populations. Understanding the mechanisms involved requires identification of the factors that shape parasite distribution and prevalence. 2. A lack of comparative information on community-level host-parasite associations limits our understanding of the role of parasites in host population divergence processes. Avian malaria (haemosporidian) parasites in bird communities offer a tractable model system to examine the potential for pathogens to influence evolutionary processes in natural host populations. 3. Using cytochrome b variation, we characterized phylogenetic diversity and prevalence of two genera of avian haemosporidian parasites, Plasmodium and Haemoproteus, and analysed biogeographic patterns of lineages across islands and avian hosts, in southern Melanesian bird communities to identify factors that explain patterns of infection. 4. Plasmodium spp. displayed isolation-by-distance effects, a significant amount of genetic variation distributed among islands but insignificant amounts among host species and families, and strong local island effects with respect to prevalence. Haemoproteus spp. did not display isolation-by-distance patterns, showed marked structuring of genetic variation among avian host species and families, and significant host species prevalence patterns. 5. These differences suggest that Plasmodium spp. infection patterns were shaped by geography and the abiotic environment, whereas Haemoproteus spp. infection patterns were shaped predominantly by host associations. Heterogeneity in the complement and prevalence of parasite lineages infecting local bird communities likely exposes host species to a mosaic of spatially divergent disease selection pressures across their naturally fragmented distributions in southern Melanesia. Host associations for Haemoproteus spp. indicate a capacity for the formation of locally co-adapted host-parasite relationships, a feature that may limit intraspecific gene flow or range expansions of closely related host species.
Resumo:
It is being realized that the traditional closed-door and market driven approaches for drug discovery may not be the best suited model for the diseases of the developing world such as tuberculosis and malaria, because most patients suffering from these diseases have poor paying capacity. To ensure that new drugs are created for patients suffering from these diseases, it is necessary to formulate an alternate paradigm of drug discovery process. The current model constrained by limitations for collaboration and for sharing of resources with confidentiality hampers the opportunities for bringing expertise from diverse fields. These limitations hinder the possibilities of lowering the cost of drug discovery. The Open Source Drug Discovery project initiated by Council of Scientific and Industrial Research, India has adopted an open source model to power wide participation across geographical borders. Open Source Drug Discovery emphasizes integrative science through collaboration, open-sharing, taking up multi-faceted approaches and accruing benefits from advances on different fronts of new drug discovery. Because the open source model is based on community participation, it has the potential to self-sustain continuous development by generating a storehouse of alternatives towards continued pursuit for new drug discovery. Since the inventions are community generated, the new chemical entities developed by Open Source Drug Discovery will be taken up for clinical trial in a non-exclusive manner by participation of multiple companies with majority funding from Open Source Drug Discovery. This will ensure availability of drugs through a lower cost community driven drug discovery process for diseases afflicting people with poor paying capacity. Hopefully what LINUX the World Wide Web have done for the information technology, Open Source Drug Discovery will do for drug discovery. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A growing understanding of the ecology of seed dispersal has so far had little influence on conservation practice, while the needs of conservation practice have had little influence on seed dispersal research. Yet seed dispersal interacts decisively with the major drivers of biodiversity change in the 21st century: habitat fragmentation, overharvesting, biological invasions, and climate change. We synthesize current knowledge of the effects these drivers have on seed dispersal to identify research gaps and to show how this information can be used to improve conservation management. The drivers, either individually, or in combination, have changed the quantity, species composition, and spatial pattern of dispersed seeds in the majority of ecosystems worldwide, with inevitable consequences for species survival in a rapidly changing world. The natural history of seed dispersal is now well-understood in a range of landscapes worldwide. Only a few generalizations that have emerged are directly applicable to conservation management, however, because they are frequently confounded by site-specific and species-specific variation. Potentially synergistic interactions between disturbances are likely to exacerbate the negative impacts, but these are rarely investigated. We recommend that the conservation status of functionally unique dispersers be revised and that the conservation target for key seed dispersers should be a population size that maintains their ecological function, rather than merely the minimum viable population. Based on our analysis of conservation needs, seed dispersal research should be carried out at larger spatial scales in heterogenous landscapes, examining the simultaneous impacts of multiple drivers on community-wide seed dispersal networks. (C) 2011 Elsevier Ltd. All rights reserved.