18 resultados para ION SYSTEMS

em Indian Institute of Science - Bangalore - Índia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Herein, a new aromatic carboxylate ligand, namely, 4-(dipyridin-2-yl)aminobenzoic acid (HL), has been designed and employed for the construction of a series of lanthanide complexes (Eu3+ = 1, Tb3+ = 2, and Gd3+ = 3). Complexes of 1 and 2 were structurally authenticated by single-crystal X-ray diffraction and were found to exist as infinite 1D coordination polymers with the general formulas {Eu(L)(3)(H2O)(2)]}(n) (1) and {Tb(L)(3)(H2O)]center dot(H2O)}(n) (2). Both compounds crystallize in monoclinic space group C2/c. The photophysical properties demonstrated that the developed 4-(dipyridin-2-yl)aminobenzoate ligand is well suited for the sensitization of Tb3+ emission (Phi(overall) = 64%) thanks to the favorable position of the triplet state ((3)pi pi*) of the ligand the energy difference between the triplet state of the ligand and the excited state of Tb3+ (Delta E) = (3)pi pi* - D-5(4) = 3197 cm(-1)], as investigated in the Gd3+ complex. On the other hand, the corresponding Eu3+ complex shows weak luminescence efficiency (Phi(overall) = 7%) due to poor matching of the triplet state of the ligand with that of the emissive excited states of the metal ion (Delta E = (3)pi pi* - D-5(0) = 6447 cm(-1)). Furthermore, in the present work, a mixed lanthanide system featuring Eu3+ and Tb3+ ions with the general formula {Eu0.5Tb0.5(L)(3)(H2O)(2)]}(n) (4) was also synthesized, and the luminescent properties were evaluated and compared with those of the analogous single-lanthanide-ion systems (1 and 2). The lifetime measurements for 4 strongly support the premise that efficient energy transfer occurs between Tb3+ and Eu3+ in a mixed lanthanide system (eta = 86%).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Ion implantation systems, used for producing high-current ion beams, employ wide-beam ion sources which are rotated through 90 degrees . These sources need mass analyser optics which are different from the conventional design. The authors present results of calculation of the image distance as a function of entrance and exit angles of a sector magnet mass analyser having such a source. These computations have been performed for the magnetic deflection angles 45 degrees , 60 degrees and 90 degrees . The details of the computations carried out using the computer program MODBEAM, developed for this purpose, are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Giant magnetoresistance (GMR), which was until recently confined to magnetic layered and granular materials, as well as doped magnetic semiconductors, occurs in manganate perovskites of the general formula Ln(1-x)A(x)MnO(3) (Ln = rare earth; A = divalent ion). These manganates are ferromagnetic at or above a certain value of x (or Mn4+ content) and become metallic at temperatures below the curie temperature, T-c. GMR is generally a maximum close to T-c or the insulator-metal (I-M) transition temperature, T-im. The T-c and %MR are markedly affected by the size of the A site cation, [r(A)], thereby affording a useful electronic phase diagram when T-c or T-im is plotted against [r(A)]. We discuss GMR and related properties of manganates in polycrystalline, thin-film, and single-crystal forms and point out certain commonalities and correlations. We also examine some unusual features in the electron-transport properties of manganates, in particular charge-ordering effects. Charge ordering is crucially dependent on [r(A)] or the e(g) band width, and the charge-ordered insulating state transforms to a metallic ferromagnetic state on the application of a magnetic field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tie lines delineating ion-exchange equilibria between MCr2O4-MAl2O4 spinel solid solution, where M is either Mn or Co, and Cr2O3-Al2O3 solid solution with the corundum structure were determined at 1373 K by electron microprobe and E0AX point count analysis of the oxide phases equilibrated with metallic Co and Au-5% Mn. The component activities in the spinel solid solutions are derived from the tie lines and the thernodynamic data for Cr2O3-Al2O3 soiid solutions available hi the literature. The Gibbs free energies of mixing calculated from the experimental data are discussed in relation to the values derived from the cation distribution a.odel based on the site preference energies and assuming random mixing on both tetrahedral and octahedral sites. Positive deviations from ideality observed in this study suggest a miscibility gap for both series of spinel solid solutions at low temperatures in the absence of oxidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soft matter provides diverse opportunities for the development of electrolytes for all solid state lithium batteries. Here we review soft matter solid electrolytes for lithium batteriesthat are primarily obtained starting from liquid electrolytic systems. This concept of solid electrolyte synthesis from liquid is significantly different from prevalent approaches. The novelty of our approach is discussed in the light of various fundamental issues and in relation to its application to rechargeable lithium batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss two temperature accretion disk flows around rotating black holes. As we know that to explain observed hard X-rays the choice of Keplerian angular momentum profile is not unique, we consider the sub-Keplerian regime of the disk. Without any strict knowledge of the magnetic field structure, we assume the cooling mechanism is dominated by bremsstrahlung process. We show that in a range of Shakura-Sunyaev viscosity parameter 0.2 greater than or similar to alpha greater than or similar to 0.0005, flow behavior varies widely, particularly by means of the size of disk, efficiency of cooling and corresponding temperatures of ions and electrons. We also show that the disk around a rotating black hole is hotter compared to that around a Schwarzschild black hole, rendering a larger difference between ion and electron temperatures in the former case. With all the theoretical solutions in hand, finally we reproduce the observed luminosities (L) of two extreme cases-the under-fed AGNs and quasars (e.g. Sgr A') with L greater than or similar to 10(33) erg/s to ultra-luminous X-ray sources with L similar to 10(41) erg/s, at different combinations of mass accretion rate, ratio of specific heats, Shakura-Sunyaev viscosity parameter and Kerr parameter, and conclude that Sgr A' may be an intermediate spinning black hole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structure of the N,N,N',N'-tetramethylethylenediammonium dithiocyanate salt has been examined by experimental charge density studies from high-resolution X-ray diffraction data. The corresponding results are compared with multipole refinements, using theoretical structure factors obtained from a periodic density functional theory calculation at the B3LYP level with a 6-31G** basis set. The salt crystallizes in space group P (1) over bar and contains only a single ion pair with an inversion center in the cation. The salt has thus one unique classical N+-H center dot center dot center dot(NCS)(-) hydrogen bond but also has six other weaker interactions: four C-H center dot center dot center dot S, one C-H center dot center dot center dot N, and one C-H center dot center dot center dot C-pi. The nature of all these interactions has been examined topologically using Bader's quantum theory of "atoms in molecules" and all eight of the Koch-Popelier criteria. The experimental and theoretical approaches agree well and both show that the inter-ion interactions, even in this simplest of systems, play an integrated and complex role in the packing of the ions in the crystal. Electrostatic potential maps are derived from experimental charge densities. This is the first time such a system has been examined in detail by these methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A triode ion plating system with a hot cathode has been described. The performance of the system is studied, by studying the discharge behaviour from the bias voltage and bias current point of view, at the substrate, for different anode currents, filament voltages and pressures. The observed substrate bias current for different operating parameters is not found to be normal. The behaviour is explained on the bias of ionisation at the respective electrodes. The studies have revealed the importance of inter-electrode spacing in the enhancement of ionisation, in ion plating systems, at lower pressures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrahigh-temperature (UHT) granulites of the central Highland Complex, Sri Lanka, underwent some of the highest known peak temperatures of crustal metamorphism. Zircon and monazite U-Pb systems in granulites near Kandy, the highest grade region (similar to 1050 degrees C; 0.9 GPa), preserve both a record of the timing of prograde and retrograde phases of UHT metamorphism and evidence for the ages of older protolith components. Zircon grains from a quartz-saturated granulite containing relics of the peak UHT assemblage have remnant detrital cores with dates of ca. 2.5-0.83 Ga. Date clusters of ca. 1.7 and 1.04-0.83 Ga record episodes of zircon growth in the source region of the protolith sediment. Two generations of overgrowths with contrasting Th/U record metamorphic zircon growth at 569 +/- 5 and 551 +/- 7 Ma, probably in the absence and presence of monazite, respectively. The age of coexisting metamorphic monazite (547 +/- 7 Ma) is indistinguishable from that of the younger, low-Th/U zircon overgrowths. Zircon from a quartz-undersaturated monazite-absent UHT granulite with a mainly retrograde assemblage is mostly metamorphic (551 +/- 5 Ma). The ca. 570 Ma zircon overgrowths in the quartz-saturated granulite probably record partial melting just before or at the metamorphic peak. The ca. 550 Ma zircon in both rocks, and the ca. 550 Ma monazite in the quartz-saturated sample, record post-peak isothermal decompression. A possible model for this pressure-temperature-time evolution is ultrahot collisional orogeny during the assembly of Gondwana, locally superheated by basaltic underplating, followed by fast extensional exhumation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ab initio MO calculations are performed on a series of ion-molecular and ion pair-molecular complexes of H2O + MX (MX = LiF, LiCl, NaCl, BeO and MgO) systems. BSSE-corrected stabilization energies, optimized geometrical parameters, internal force constants and harmonic vibrational frequencies have been evaluated for all the structures of interest. The trends observed in the geometrical parameters and other properties calculated for the mono-hydrated contact ion pair complexes parallel those computed for the complexes of the individual ions. The bifurcated structures are found to be saddle points with an imaginary frequency corresponding to the rocking mode of water molecules. The solvent-shared ion pair complexes have high interaction energies. Trends in the internal force constant and harmonic frequency values are discussed in terms of ion-molecular and ion-pair molecular interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new vesicle-forming bolaphile/amphiphile ion pairs are synthesized; the bolaphile shapes in such hybrid systems strongly control their vesicular properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with the use of Stem theory as applied to a clay-water electrolyte system, which is more realistic to understand the force system at micro level man the Gouy-Chapman theory. The influence of the Stern layer on potential-distance relationship has been presented quantitatively for certain specified clay-water systems and the results are compared with the Gouy-Chapman model. A detailed parametric study concerning the number of adsorption spots on the clay platelet, the thickness of the Stern layer, specific adsorption potential and the value of dielectric constant of the pore fluid in the Stern layer, was carried out. This study investigates that the potential obtained at any distance using the Stern theory is higher than that obtained by the Gouy-Chapman theory. The hydrated size of the ion is found to have a significant influence on the potential-distance relationship for a given clay, pore fluid characteristics and valence of the exchangeable ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solid oxide-ion electrolytes find application in oxygen sensors, oxygen pumps and in high-temperature electrolyser-fuel-cell hybrid systems. All the solid electrolytes known so Qr, however, exhibit: tow oxide-ion conductivities below 973 K. Therefore, there is a need for fast oxide-ion conductors operative at temperatures around 673 K, Recently, efforts have been directed towards developing such materials. This article summarizes various type of oxide-ton electrolytes reported in literature and outlines a strategy for the identificatiom/synthesis of improved materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the design and synthesis of new lithium ion conductors with the formula, LiSr(1.65)rectangle(0.35)B(1.3)B'O-1.7(9) (rectangle = vacancy; B = Ti, Zr; B' = Nb, Ta), on the basis of a systematic consideration of the composition-structure-property correlations in the well-known lithium-ion conductor, La-(2/3-x)Li(3x)rectangle((1/3)-2x)TiO3 (I), as well as the perovskite oxides in Li-A-B,B'-O (A = Ca, Sr, Ba; B = Ti, Zr; B' = Nb, Ta) systems. A high lithium-ion conductivity of ca. 0.12 S/cm at 360 degrees C is exhibited by LiSr(1.65)rectangle(0.35)Ti(1.3)Ta(1.7)O(9) (III) and LiSr(1.65)rectangle(0.35)Zr(1.3)Ta(1.7)O(9) (IV), of which the latter containing stable Zr(IV) and Ta(V) oxidation states is likely to be a candidate electrolyte material for all-solid-state lithium battery application. More importantly, we believe the approach described here could be extended to synthesize newer, possibly better, lithium ion conductors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural and charge density distribution studies have been carried out on a single crystal data of an ammonium borate, [C(10)H(26)N(4)][B(5)O(6)(OH)(4)](2), synthesized by solvothermal method. Further, the experimentally observed geometry is used for the theoretical charge density calculations using the B3LYP/6-31G** level of theory, and the results are compared with the experimental values. Topological analysis of charge density based on the Atoms in Molecules approach for B-O bonds exhibit mixed covalent/ionic character. Detailed analysis of the hydrogen bonds in the crystal structure in the ammonium borate provides insights into the understanding of the reaction pathways that net atomic charges and electrostatic potential isosurfaces also give additional such systems. could result in the formation of borate minerals. The input to evaluate chemical and physical properties in such systems.