311 resultados para INTERMEDIATE-ENERGY POSITRONS

em Indian Institute of Science - Bangalore - Índia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the existing traditional solar cookers, the cooking is performed near the collector which may be at an inconvenient location for cooking purposes. This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is very common in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid like oil. The transfer of solar heat is a two fold process wherein the energy from the collector is transferred first to an intermediate energy storage tank and then the energy is subsequently transferred from the tank to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz. the fluid flow rate from collector to tank, fluid flow rate from tank to load and the diameter of the pipes. The entire system is modeled using the bond graph approach. This paper discusses the implementation of such a system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a hybrid solar cooking system where the solar energy is brought to the kitchen. The energy source is a combination of the solar thermal energy and the Liquefied Petroleum Gas (LPG) that is in common use in kitchens. The solar thermal energy is transferred to the kitchen by means of a circulating fluid. The transfer of solar heat is a twofold process wherein the energy from the collector is transferred first to an intermediate energy storage buffer and the energy is subsequently transferred from the buffer to the cooking load. There are three parameters that are controlled in order to maximize the energy transfer from the collector to the load viz, the fluid flow rate from collector to buffer, fluid flow rate from buffer to load and the diameter of the pipes. This is a complex multi energy domain system comprising energy flow across several domains such as thermal, electrical and hydraulic. The entire system is modeled using the bond graph approach with seamless integration of the power flow in these domains. A method to estimate different parameters of the practical cooking system is also explained. Design and life cycle costing of the system is also discussed. The modeled system is simulated and the results are validated experimentally. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Photoluminescence and photocatalytic properties of Eu-doped ZnO nanoparticles (NPs) were synthesized by facile phyto route. XPS results demonstrated the existence of Eu3+ as dopant into ZnO. Morphologies of the NPs were mainly dependent on Eu3+ and Aloe vera gel. Red shift of energy band gap was due to the creation of intermediate energy states of Eu3+ and oxygen vacancies in the band gap. PL emission of ZnO:Eu3+ (1-11 mol%, 8 ml and 7 mol%, 2-12 ml) exhibit characteristic peaks of D-5(0) -> F-7(2) transitions. From the Judd-Ofelt analysis, intensities of transitions between different.' levels dependent on the symmetry of the local environment of Eu3+ ions. CIE chromaticity co-ordinates confirm reddish emission of the phosphor. Further, NPs exhibit excellent photocatalytic activity for the degradation of Rhodamine B (94%) under Sunlight was attributed to crystallite size, band gap, morphology and oxygen vacancies. In addition, photocatalyst reusability studies were conducted and found that Eu-doped catalyst could be reused several times with negligible decrease in catalytic activity. The present work directs new possibilities to provide some new insights into the design of new phyto synthesized nanophosphors for display devices, photocatalysts with high activity for environmental clean-up and solar energy conversion. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A universal relation between the cohesive energy and the particle size has been predicted based on the liquid-drop model. The universal relation is well supported by other theoretical models and the available experimental data. The universal relations for intermediate size range as well as for particles with very few atoms are discussed. A comparison of onset temperature of evaporation also establishes a universal relation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bacteriorhodopsin has been the subject of intense study in order to understand its photochemical function. The recent atomic model proposed by Henderson and coworkers based on electron cryo-microscopic studies has helped in understanding many of the structural and functional aspects of bacteriorhodopsin. However, the accuracy of the positions of the side chains is not very high since the model is based on low-resolution data. In this study, we have minimized the energy of this structure of bacteriorhodopsin and analyzed various types of interactions such as - intrahelical and interhelical hydrogen bonds and retinal environment. In order to understand the photochemical action, it is necessary to obtain information on the structures adopted at the intermediate states. In this direction, we have generated some intermediate structures taking into account certain experimental data, by computer modeling studies. Various isomers of retinal with 13-cis and/or 15-cis conformations and all possible staggered orientations of Lys-216 side chain were generated. The resultant structures were examined for the distance between Lys-216-schiff base nitrogen and the carboxylate oxygen atoms of Asp-96 - a residue which is known to reprotonate the schiff base at later stages of photocycle. Some of the structures were selected on the basis of suitable retinal orientation and the stability of these structures were tested by energy minimization studies. Further, the minimized structures are analyzed for the hydrogen bond interactions and retinal environment and the results are compared with those of the minimized rest state structure. The importance of functional groups in stabilizing the structure of bacteriorhodopsin and in participating dynamically during the photocycle have been discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of new matter fields charged under the Standard Model gauge group at intermediate scales below the Grand Unification scale modifies the renormalization group evolution of the gauge couplings. This can in turn significantly change the running of the Minimal Supersymmetric Standard Model parameters, in particular the gaugino and the scalar masses. In the absence of new large Yukawa couplings we can parameterise all the intermediate scale models in terms of only two parameters controlling the size of the unified gauge coupling. As a consequence of the modified running, the low energy spectrum can be strongly affected with interesting phenomenological consequences. In particular, we show that scalar over gaugino mass ratios tend to increase and the regions of the parameter space with neutralino Dark Matter compatible with cosmological observations get drastically modified. Moreover, we discuss some observables that can be used to test the intermediate scale physics at the LHC in a wide class of models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrical switching studies on amorphous Si15Te74Ge11 thin film devices show interesting changes in the switching behavior with changes in the input energy supplied; the input energy determines the extent of crystallization in the active volume, which is reflected in the value of SET resistances. This in turn, determines the trend exhibited by switching voltage (V-t) for different input conditions. The results obtained are analyzed on the basis of the amount of Joule heat generated, which determines the temperature of the active volume. Depending on the final temperature, devices are rendered either in the intermediate state with a resistance of 5*10(2) Omega or the ON state with a resistance of 5*10(1) Omega. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. Sometimes, the metastable phase might have a lower free energy minimum than the liquid but higher than the stable-solid-phase minimum and have characteristics in between the parent liquid and the globally stable solid phase. In such cases, nucleation of the solid phase from the melt may be facilitated by the metastable phase because the latter can ``wet'' the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier because surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work, we discuss a density functional theory (DFT)-based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order-parameter-dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier, and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of the Ostwald step rule and the well-known phenomenon of ``disappearing polymorphs'' that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics, some of which may be explored via modem nanoscopic synthetic methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protein folding funnel paradigm suggests that folding and unfolding proceed as directed diffusion in a multidimensional free energy surface where a multitude of pathways can be traversed during the protein's sojourn from initial to final state. However, finding even a single pathway, with the detail chronicling of intermediates, is an arduous task. In this work we explore the free energy surface of unfolding pathway through umbrella sampling, for a small globular a-helical protein chicken-villin headpiece (HP-36) when the melting of secondary structures is induced by adding DMSO in aqueous solution. We find that the unfolding proceeds through the initial separation or melting of aggregated hydrophobic core that comprises of three phenylalanine residues (Phe7, Phe11, and Phe18). This separation is accompanied by simultaneous melting of the second helix. Unfolding is found to be a multistage process involving crossing of three consecutive minima and two barriers at the initial stage. At a molecular level, Phe18 is observed to reorient itself towards other hydrophobic grooves to stabilize the intermediate states. We identify the configuration of the intermediates and correlate the intermediates with those obtained in our previous works. We also give an estimate of the barriers for different transition states and observe the softening of the barriers with increasing DMSO concentration. We show that higher concentration of DMSO tunes the unfolding pathway by destabilizing the third minimum and stabilizing the second one, indicating the development of a solvent modified, less rugged pathway. The prime outcome of this work is the demonstration that mixed solvents can profoundly transform the nature of the energy landscape and induce unfolding via a modified route. A successful application of Kramer's rate equation correlating the free energy simulation results shows faster rate of unfolding with increasing DMSO concentration. This work perhaps presents the first systematic theoretical study of the effect of a chemical denaturant on the microscopic free energy surface and rates of unfolding of HP-36. (C) 2014 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three materials, pure aluminium, Al-4 wt.% Mg, alpha-brass have been chosen to understand the evolution of texture and microstructure during rolling. Pure Al develops a strong copper-type rolling texture and the deformation is entirely slip dominated. In Al-4Mg alloy, texture is copper-type throughout the deformation. The advent of Cu-type shear bands in the later stages of deformation has a negligible effect on the final texture. alpha-brass shows a characteristic brass-type texture from the early stages of rolling. Extensive twinning in the intermediate stages of deformation (epsilon(t) similar to 0.5) causes significant texture reorientation towards alpha-fiber. Beyond 40% reduction, deformation is dominated by Bs-type shear bands, and the banding coincides with the evolution of <111>parallel to ND components. The crystallites within the bands preferentially show <110>parallel to ND components. The absence of the Cu component throughout the deformation process indicates that, for the evolution of brass-type texture, the presence of Cu component is not a necessary condition. The final rolling texture is a synergistic effect of deformation twinning and shear banding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SecB is a cytosolic, tetrameric chaperone of Escherichia coli which maintains precursor proteins in a translocation competent state. We have investigated the effect of SecB on the refolding kinetics of the small protein barstar in I M guanidine hydrochloride at pH 7.0 and 25 degrees C using fluorescence spectroscopy. We show that SecB does not bind either the native or the unfolded states of barstar but binds to a late near-native intermediate along the folding pathway. For barstar, polypeptide collapse and formation of a hydrophobic surface are required for binding to SecB. SecB does not change the apparent rate constant of barstar refolding. The kinetic data for SecB binding to barstar are not consistent with simple kinetic partitioning models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have designed a four-helix protein that is expected to tetramerize in the membrane to form an ion channel with a structurally well defined pore. A synthetic peptide corresponding to the channel lining helix facilitates ion transport across liposomal membranes and largely helical in membranes. Detailed circular dichroism studies of the peptide in methanol, water and methanal-water mixtures reveal that it is helical in methanol, beta-structured in 97.5% water and a combination of these two structures at intermediate compositions of methanol and water. A fluorescence resonance energy transfer study of the peptide shows that the peptide is monomeric in methanol but undergoes extensive anti-parallel aggregation in aqueous solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The measurement of surface energy balance over a land surface in an open area in Bangalore is reported. Measurements of all variables needed to calculate the surface energy balance on time scales longer than a week are made. Components of radiative fluxes are measured while sensible and latent heat fluxes are based on the bulk method using measurements made at two levels on a micrometeorological tower of 10 m height. The bulk flux formulation is verified by comparing its fluxes with direct fluxes using sonic anemometer data sampled at 10 Hz. Soil temperature is measured at 4 depths. Data have been continuously collected for over 6 months covering pre-monsoon and monsoon periods during the year 2006. The study first addresses the issue of getting the fluxes accurately. It is shown that water vapour measurements are the most crucial. A bias of 0.25% in relative humidity, which is well above the normal accuracy assumed the manufacturers but achievable in the field using a combination of laboratory calibration and field intercomparisons, results in about 20 W m(-2) change in the latent heat flux on the seasonal time scale. When seen on the seasonal time scale, the net longwave radiation is the largest energy loss term at the experimental site. The seasonal variation in the energy sink term is small compared to that in the energy source term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion such is the integrated diffusion coefficient of the phase, the tracer diffusion coefficient of species at different temperatures and the activation energy for diffusion, are determined in V3Si phase with A15 crystal structure. The tracer diffusion coefficient of Si Was found to be negligible compared to the tracer diffusion coefficient of V. The calculated diffusion parameters will help to validate the theoretical analysis of defect structure of the phase, which plays an important role in the superconductivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.