7 resultados para Hydropower

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a chance-constrained linear programming formulation for reservoir operation of a multipurpose reservoir. The release policy is defined by a chance constraint that the probability of irrigation release in any period equalling or exceeding the irrigation demand is at least equal to a specified value P (called reliability level). The model determines the maximum annual hydropower produced while meeting the irrigation demand at a specified reliability level. The model considers variation in reservoir water level elevation and also the operating range within which the turbine operates. A linear approximation for nonlinear power production function is assumed and the solution obtained within a specified tolerance limit. The inflow into the reservoir is considered random. The chance constraint is converted into its deterministic equivalent using a linear decision rule and inflow probability distribution. The model application is demonstrated through a case study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submergence of land is a major impact of large hydropower projects. Such projects are often also dogged by siltation, delays in construction and heavy debt burdens-factors that are not considered in the project planning exercise. A simple constrained optimization model for the benefit~ost analysis of large hydropower projects that considers these features is proposed. The model is then applied to two sites in India. Using the potential productivity of an energy plantation on the submergible land is suggested as a reasonable approach to estimating the opportunity cost of submergence. Optimum project dimensions are calculated for various scenarios. Results indicate that the inclusion of submergence cost may lead to a substanual reduction in net present value and hence in project viability. Parameters such as project lifespan, con$truction time, discount rate and external debt burden are also of significance. The designs proposed by the planners are found to be uneconomic, whIle even the optimal design may not be viable for more typical scenarios. The concept of energy opportunity cost is useful for preliminary screening; some projects may require more detailed calculations. The optimization approach helps identify significant trade-offs between energy generation and land availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible futurescenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India,which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A real-time operational methodology has been developed for multipurpose reservoir operation for irrigation and hydropower generation with application to the Bhadra reservoir system in the state of Karnataka, India. The methodology consists of three phases of computer modelling. In the first phase, the optimal release policy for a given initial storage and inflow is determined using a stochastic dynamic programming (SDP) model. Streamflow forecasting using an adaptive AutoRegressive Integrated Moving Average (ARIMA) model constitutes the second phase. A real-time simulation model is developed in the third phase using the forecast inflows of phase 2 and the operating policy of phase 1. A comparison of the optimal monthly real-time operation with the historical operation demonstrates the relevance, applicability and the relative advantage of the proposed methodology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Himalayan glaciers are a focus of public and scientific debate. Prevailing uncertainties are of major concern because some projections of their future have serious implications for water resources. Most Himalayan glaciers are losing mass at rates similar to glaciers elsewhere, except for emerging indications of stability or mass gain in the Karakoram. A poor understanding of the processes affecting them, combined with the diversity of climatic conditions and the extremes of topographical relief within the region, makes projections speculative. Nevertheless, it is unlikely that dramatic changes in total runoff will occur soon, although continuing shrinkage outside the Karakoram will increase the seasonality of runoff, affect irrigation and hydropower, and alter hazards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water is the most important medium through which climate change influences human life. Rising temperatures together with regional changes in precipitation patterns are some of the impacts of climate change that have implications on water availability, frequency and intensity of floods and droughts, soil moisture, water quality, water supply and water demands for irrigation and hydropower generation. In this article we provide an introduction to the emerging field of hydrologic impacts of climate change with a focus on water availability, water quality and irrigation demands. Climate change estimates on regional or local spatial scales are burdened with a considerable amount of uncertainty, stemming from various sources such as climate models, downscaling and hydrological models used in the impact assessments and uncertainty in the downscaling relationships. The present article summarizes the recent advances on uncertainty modeling and regional impacts of climate change for the Mahanadi and Tunga-Bhadra Rivers in India.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Streamflow forecasts at daily time scale are necessary for effective management of water resources systems. Typical applications include flood control, water quality management, water supply to multiple stakeholders, hydropower and irrigation systems. Conventionally physically based conceptual models and data-driven models are used for forecasting streamflows. Conceptual models require detailed understanding of physical processes governing the system being modeled. Major constraints in developing effective conceptual models are sparse hydrometric gauge network and short historical records that limit our understanding of physical processes. On the other hand, data-driven models rely solely on previous hydrological and meteorological data without directly taking into account the underlying physical processes. Among various data driven models Auto Regressive Integrated Moving Average (ARIMA), Artificial Neural Networks (ANNs) are most widely used techniques. The present study assesses performance of ARIMA and ANNs methods in arriving at one-to seven-day ahead forecast of daily streamflows at Basantpur streamgauge site that is situated at upstream of Hirakud Dam in Mahanadi river basin, India. The ANNs considered include Feed-Forward back propagation Neural Network (FFNN) and Radial Basis Neural Network (RBNN). Daily streamflow forecasts at Basantpur site find use in management of water from Hirakud reservoir. (C) 2015 The Authors. Published by Elsevier B.V.