38 resultados para Hydrographic basins

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use changes influence local biodiversity directly, and also cumulatively, contribute to regional and global changes in natural systems and quality of life. Consequent to these, direct impacts on the natural resources that support the health and integrity of living beings are evident in recent times. The Western Ghats being one of the global biodiversity hotspots, is reeling under a tremendous pressure from human induced changes in terms of developmental projects like hydel or thermal power plants, big dams, mining activities, unplanned agricultural practices,monoculture plantations, illegal timber logging, etc. This has led to the once contiguous forest habitats to be fragmented in patches, which in turn has led to the shrinkage of original habitat for the wildlife, change in the hydrological regime of the catchment, decreased inflow in streams,human-animal conflicts, etc. Under such circumstances, a proper management practice is called for requiring suitable biological indicators to show the impact of these changes, set priority regions and in developing models for conservation planning. Amphibians are regarded as one of the best biological indicators due to their sensitivity to even the slightest changes in the environment and hence they could be used as surrogates in conservation and management practices. They are the predominating vertebrates with a high degree of endemism (78%) in Western Ghats. The present study is an attempt to bring in the impacts of various land-uses on anuran distribution in three river basins. Sampling was carried out for amphibians during all seasons of 2003-2006 in basins of Sharavathi, Aghanashini and Bedthi. There are as many as 46 species in the region, one of which is new to science and nearly 59% of them are endemic to the Western Ghats. They belong to nine families, Dicroglossidae being represented by 14 species,followed by Rhacophoridae (9 species) and Ranidae (5 species). Species richness is high in Sharavathi river basin, with 36 species, followed by Bedthi 33 and Aghanashini 27. The impact of land-use changes, was investigated in the upper catchment of Sharavathi river basin. Species diversity indices, relative abundance values, percentage endemics gave clear indication of differences in each sub-catchment. Karl Pearson’s correlation coefficient (r) was calculated between species richness, endemics, environmental descriptors, land-use classes and fragmentation metrics. Principal component analysis was performed to depict the influence of these variables. Results show that sub-catchments with lesser percentage of forest, low canopy cover, higher amount of agricultural area, low rainfall have low species richness, less endemic species and abundant non-endemic species, whereas endemism, species richness and abundance of endemic species are more in the sub-catchments with high tree density, endemic trees, canopy cover, rainfall and lower amount of agriculture fields. This analysis aided in prioritising regions in the Sharavathi river basin for further conservation measures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Indian subcontinent divides the north Indian Ocean into two tropical basins, namely the Arabian Sea and the Bay of Bengal. The Arabian Sea has high salinity whereas the salinity of the Bay of Bengal is much lower due to the contrast in freshwater forcing of the two basins. The freshwater received by the Bay in large amounts during the summer monsoon through river discharge is flushed out annually by ocean circulation. After the withdrawal of the summer monsoon, the Ganga – Brahmaputra river plume flows first along the Indian coast and then around Sri Lanka into the Arabian Sea creating a low salinity pool in the southeastern Arabian Sea (SEAS). In the same region, during the pre-monsoon months of February – April, a warm pool, known as the Arabian Sea Mini Warm Pool (ASMWP), which is distinctly warmer than the rest of the Indian Ocean, takes shape. In fact, this is the warmest region in the world oceans during this period. Simulation of the river plume and its movement as well as its implications to thermodynamics has been a challenging problem for models of Indian Ocean. Here we address these issues using an ocean general circulation model – first we show that the model is capable of reproducing fresh plumes in the Bay of Bengal as well as its movement and then we use the model to determine the processes that lead to formation of the ASMWP. Hydrographic observations from the western Bay of Bengal have shown the presence of a fresh plume along the northern part of the Indian coast during summer monsoon. The Indian Ocean model when forced by realistic winds and climatological river discharge reproduces the fresh plume with reasonable accuracy. The fresh plume does not advect along the Indian coast until the end of summer monsoon. The North Bay Monsoon Current, which flows eastward in the northern Bay, separates the low salinity water from the more saline southern parts of the bay and thus plays an important role in the fresh water budget of the Bay of Bengal. The model also reproduces the surge of the fresh-plume along the Indian coast, into the Arabian Sea during northeast monsoon. Mechanisms that lead to the formation of the Arabian Sea Mini Warm Pool are investigated using several numerical experiments. Contrary to the existing theories, we find that salinity effects are not necessary for the formation of the ASMWP. The orographic effects of the Sahyadris (Western Ghats) and resulting reduction in wind speed leads to the formation of the ASMWP. During November – April, the SEAS behave as a low-wind heatdominated regime where the evolution of sea surface temperature is solely determined by atmospheric forcing. In such regions the evolution of surface layer temperature is not dependent on the characteristics of the subsurface ocean such as the barrier layer and temperature inversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers of the Himalaya contribute significantly in the processes linking atmosphere, biosphere and hydrosphere, thus need to be monitored in view of the climatic variations. In this direction, many studies have been carried out during the last two decades and satellite-based multispectral data have been used extensively for this purpose throughout the world. The present study is aimed at mapping of glaciers in two adjacent basins (Warwan and Bhut) of the Western Himalaya with almost similar altitude and latitude and comparing the changes in the two time-frames with respect to three parameters, i.e. area, debris cover and area altitude distribution of glaciers. The two time-frames are topographical maps of 1962 and IRS LISS III images of 2001/02. Deglaciation was observed in both the basins with 19% and 9% loss in the glaciated area in Warwan and Bhut respectively. This difference may be due to: (i) the smaller size of the glaciers of the Warwan Basin (e.g. 164 glaciers having <1 sq. km area in comparison to 101 glaciers in the Bhut Basin), (ii) lower percentage of moraine cover in Warwan (18) than in the Bhut Basin (30) and (iii) higher percentage of glaciated area lying below 5100 m (80) in Warwan than in the Bhut Basin (70).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glaciers are natural reservoirs of fresh water in frozen state and sensitive indicators of climate change. Among all the mountainous glaciated regions, glaciers of Himalayas form one of the largest concentrations of ice outside the Polar Regions. Almost all the major rivers of northern India originate from these glaciers and sustain perennial flow. Therefore, in view of the importance and role of the glaciers in sustaining the life on the Earth, monitoring the health of glaciers is necessary. Glacier's health is monitored in two ways (i) by mapping the change in extent of glaciers (ii) by finding variation in the annual mass balance. This paper has been discussed the later approach for monitoring the health of glaciers of Warwan and Bhut basins. Mass balance of glaciers of these two basins was determined based on the extraction of snow line at the end of ablation season. A series of satellite images of AWiFS sensor were analysed for extraction of snowline on the glaciers for the period of 2005, 2006 and 2007. The snow line at the end of ablation season is used to compute accumulation area ratio (AAR = Accumulation area/Glacier area) for each glacier of basins. An approach based on relationship of AAR to specific mass balance (computed in field) for glaciers of Basapa basin was employed in the present study. Mean of specific mass balance of individual glacier for the year 2005, 2006 and 2007 of Warwan basin was found to be -ve 0.19 m, -ve 0.27 m and -ve 0.2 m respectively. It is 0.05 m, -ve 0.11 m and -ve 0.19 m for Bhut basin. The analysis suggests a loss of 4.3 and 0.83 kmA(3) of glacier in the monitoring period of 3 years for Warwan and Bhut basins respectively. The overall results suggest that the glaciers of Warwan basin and Bhut basins have suffered more loss of ice than gain in the monitoring period of 3 years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recession flows in a basin are controlled by the temporal evolution of its active drainage network (ADN). The geomorphological recession flow model (GRFM) assumes that both the rate of flow generation per unit ADN length (q) and the speed at which ADN heads move downstream (c) remain constant during a recession event. Thereby, it connects the power law exponent of -dQ/dt versus Q (discharge at the outlet at time t) curve, , with the structure of the drainage network, a fixed entity. In this study, we first reformulate the GRFM for Horton-Strahler networks and show that the geomorphic ((g)) is equal to D/(D-1), where D is the fractal dimension of the drainage network. We then propose a more general recession flow model by expressing both q and c as functions of Horton-Strahler stream order. We show that it is possible to have = (g) for a recession event even when q and c do not remain constant. The modified GRFM suggests that is controlled by the spatial distribution of subsurface storage within the basin. By analyzing streamflow data from 39 U.S. Geological Survey basins, we show that is having a power law relationship with recession curve peak, which indicates that the spatial distribution of subsurface storage varies across recession events. Key Points The GRFM is reformulated for Horton-Strahler networks. The GRFM is modified by allowing its parameters to vary along streams. Sub-surface storage distribution controls recession flow characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ubiquity of the power law relationship between dQ/dt and Q for recession periods (-dQ/dt kQ(alpha); Q being discharge at the basin outlet at time t) clearly hints at the existence of a dominant recession flow process that is common to all real basins. It is commonly assumed that a basin, during recession events, functions as a single phreatic aquifer resting on a impermeable horizontal bed or the Dupuit-Boussinesq (DB) aquifer, and with time different aquifer geometric conditions arise that give different values of alpha and k. The recently proposed alternative model, geomorphological recession flow model, however, suggests that recession flows are controlled primarily by the dynamics of the active drainage network (ADN). In this study we use data for several basins and compare the above two contrasting recession flow models in order to understand which of the above two factors dominates during recession periods in steep basins. Particularly, we do the comparison by selecting three key recession flow properties: (1) power law exponent alpha, (2) dynamic dQ/dt-Q relationship (characterized by k) and (3) recession timescale (time period for which a recession event lasts). Our observations suggest that neither drainage from phreatic aquifers nor evapotranspiration significantly controls recession flows. Results show that the value of a and recession timescale are not modeled well by DB aquifer model. However, the above mentioned three recession curve properties can be captured satisfactorily by considering the dynamics of the ADN as described by geomorphological recession flow model, possibly indicating that the ADN represents not just phreatic aquifers but the organization of various sub-surface storage systems within the basin. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An analytical and experimental study of the hydraulic jump in stilling basins with abrupt drop and sudden enlargement, called the spatial B-jump here, is carried out for finding the sequent depth ratio and resulting energy dissipation. The spatial B-jump studied has its toe downstream of the expansion section, and the stream lines at the toe are characterized by downward curvature. An expression is obtained for the sequent depth ratio based on the momentum equation with suitable assumptions for the extra pressure force term because of the abrupt drop in the bed and sudden enlargement in the basin width. Predictions compare favorably with experiments. It is shown that the spatial B-jump needs less tailwater depth, thereby enhancing the stability of the jump when compared either with spatial jump, which forms in sudden expanding channels, or with B-jump, which forms in a channel with an abrupt drop in bed. It is also shown that there is a significant increase in relative energy loss for the spatial B-jump compared to either the spatial jump or B-jump alone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural relaxation behavior of a rapidly quenched (RQ) and a slowly cooled Pd40Cu30Ni10P20 metallic glass was investigated and compared. Differential scanning calorimetry was employed to monitor the relaxation enthalpies at the glass transition temperature, T-g , and the Kolrausch-Williams-Watts (KWW) stretched exponential function was used to describe its variation with annealing time. It was found that the rate of enthalpy recovery is higher in the ribbon, implying that the bulk is more resistant to relaxation at low temperatures of annealing. This was attributed to the possibility of cooling rate affecting the locations where the glasses get trapped within the potential energy landscape. The RQ process traps a larger amount of free volume, resulting in higher fragility, and in turn relaxes at the slightest thermal excitation (annealing). The slowly cooled bulk metallic glass (BMG), on the other hand, entraps lower free volume and has more short-range ordering, hence requiring a large amount of perturbation to access lower energy basins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relatively few studies have addressed water management and adaptation measures in the face of changing water balances due to climate change. The current work studies climate change impact on a multipurpose reservoir performance and derives adaptive policies for possible futurescenarios. The method developed in this work is illustrated with a case study of Hirakud reservoir on the Mahanadi river in Orissa, India,which is a multipurpose reservoir serving flood control, irrigation and power generation. Climate change effects on annual hydropower generation and four performance indices (reliability with respect to three reservoir functions, viz. hydropower, irrigation and flood control, resiliency, vulnerability and deficit ratio with respect to hydropower) are studied. Outputs from three general circulation models (GCMs) for three scenarios each are downscaled to monsoon streamflow in the Mahanadi river for two future time slices, 2045-65 and 2075-95. Increased irrigation demands, rule curves dictated by increased need for flood storage and downscaled projections of streamflow from the ensemble of GCMs and scenarios are used for projecting future hydrologic scenarios. It is seen that hydropower generation and reliability with respect to hydropower and irrigation are likely to show a decrease in future in most scenarios, whereas the deficit ratio and vulnerability are likely to increase as a result of climate change if the standard operating policy (SOP) using current rule curves for flood protection is employed. An optimal monthly operating policy is then derived using stochastic dynamic programming (SDP) as an adaptive policy for mitigating impacts of climate change on reservoir operation. The objective of this policy is to maximize reliabilities with respect to multiple reservoir functions of hydropower, irrigation and flood control. In variations to this adaptive policy, increasingly more weightage is given to the purpose of maximizing reliability with respect to hydropower for two extreme scenarios. It is seen that by marginally sacrificing reliability with respect to irrigation and flood control, hydropower reliability and generation can be increased for future scenarios. This suggests that reservoir rules for flood control may have to be revised in basins where climate change projects an increasing probability of droughts. However, it is also seen that power generation is unable to be restored to current levels, due in part to the large projected increases in irrigation demand. This suggests that future water balance deficits may limit the success of adaptive policy options. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key problem in helicopter aeroelastic analysis is the enormous computational time required for a numerical solution of the nonlinear system of algebraic equations required for trim, particularly when free wake models are used. Trim requires calculation of the main rotor and tail rotor controls and the vehicle attitude which leads to the six steady forces and moments about the helicopter center of gravity to be zero. An appropriate initial estimate of the trim state is needed for successful helicopter trim. This study aims to determine the control inputs that can have considerable effect on the convergence of trim solution in the aeroelastic analysis of helicopter rotors by investigating the basin of attraction of the nonlinear equations (set of initial guess points from which the nonlinear equations converge). It is illustrated that the three main rotor pitch controls of collective pitch, longitudinal cyclic pitch and lateral cyclic pitch have a significant contribution to the convergence of the trim solution. Trajectories of the Newton iterates are shown and some ideas for accelerating the convergence of a trim solution in the aeroelastic analysis of helicopters are proposed. It is found that the basins of attraction can have fractal boundaries. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coastal lagoons are complex ecosystems exhibiting a high degree of non-linearity in the distribution and exchange of nutrients dissolved in the water column due to their spatio-temporal characteristics. This factor has a direct influence on the concentrations of chlorophyll-a, an indicator of the primary productivity in the water bodies as lakes and lagoons. Moreover the seasonal variability in the characteristics of large-scale basins further contributes to the uncertainties in the data on the physico-chemical and biological characteristics of the lagoons. Considering the above, modelling the distributions of the nutrients with respect to the chlorophyll-concentrations, hence requires an effective approach which will appropriately account for the non-linearity of the ecosystem as well as the uncertainties in the available data. In the present investigation, fuzzy logic was used to develop a new model of the primary production for Pulicat lagoon, Southeast coast of India. Multiple regression analysis revealed that the concentrations of chlorophyll-a in the lagoon was highly influenced by the dissolved concentrations of nitrate, nitrites and phosphorous to different extents over different seasons and years. A high degree of agreement was obtained between the actual field values and those predicted by the new fuzzy model (d = 0.881 to 0.788) for the years 2005 and 2006, illustrating the efficiency of the model in predicting the values of chlorophyll-a in the lagoon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the Himalayas, a large area is covered by glaciers and seasonal snow and changes in its extent can influence availability of water in the Himalayan Rivers. In this paper, changes in glacial extent, glacial mass balance and seasonal snow cover are discussed. Glacial retreat was estimated for 1868 glaciers in 11 basins distributed in the Indian Himalaya since 1962. The investigation has shown an overall reduction in glacier area from 6332 to 5329km2 from 1962 to 2001/2 - an overall deglaciation of 16%. Snow line at the end of ablation season on the Chhota Shigri glacier observed using field and satellite methods suggests a change in altitude from 4900 to 5200m from the late 1970s to present. Seasonal snow cover was monitored in the 28 river sub-basins using normalized difference snow index (NDSI) technique in Central and Western Himalaya. The investigation has shown that in the early part of winter, i.e. from October to December, a large amount of snow retreat was observed. For many basins located in lower altitude and in the south of the Pir Panjal range, snow ablation was observed throughout the winter season. In addition, average stream runoff of the Baspa basin for the month of December increased by 75%. This combination of glacial retreat, negative mass balance, early melting of seasonal snow cover and winter-time increase in stream runoff might suggest an influence of global warming on the Himalayan cryosphere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Bay of Bengal, a semienclosed tropical basin that comes under the influence of monsoonal wind and freshwater influx, is distinguished by a strongly stratified surface layer and a seasonally reversing circulation. We discuss characteristics of these features in the western Bay during the northeast monsoon, when the East India Coastal Current (EICC) flows southward, using hydrographic data collected during December 1991. Vertical profiles show uniform temperature and salinity in a homogeneous surface layer, on average, 25 m deep but shallower northward and coastward. The halocline, immediately below, is approximately 50 m thick; salinity changes by approximately 3 parts per thousand. About two thirds of the profiles show temperature inversions in this layer. Salinity below the halocline hardly changes, and stratification is predominantly due to temperature variation, The halocline is noticeably better developed and the surface homogeneous layer is thinner in a low-salinity plume that hugs the coastline along the entire east coast of India, The plume is, on average, 50 km wide, with isohalines sloping down toward the coast. Most prominent in the geostrophic velocity field is the equatorward EICC. Its transport north of about 13 degrees N, computed with 1000 dbar as the level of reference, varies between 2.6 and 7.1 x 10(6) m(3) s(-1); just south of this latitude, a northwestward flow from offshore recurves and merges with the coastal current. At the southern end of the region surveyed, the transport is 7.7 x 10(6) m(3) s(-1). Recent model studies lead us to conclude that the EICC during the northeast monsoon is driven by winds along the east coast of India and Ekman pumping in the interior bay. In the south, Ekman pumping over the southwestern bay is responsible for the northwestward flow that merges with the EICC.