3 resultados para Hyènes

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent studies have demonstrated that solvation dynamics in many common dipolar liquids contain an initial, ultrafast Gaussian component which may contribute even more than 60% to the total solvation energy. It is also known that adiabatic electron transfer reactions often probe the high-frequency components of the relevant solvent friction (Hynes, J. T. J. Phys. Chem. 1986, 90, 3701). In this paper, we present a theoretical study of the effects of the ultrafast solvent polar modes on the adiabatic electron transfer reactions by using the formalism of Hynes. Calculations have been carried out for a model system and also for water and acetonitrile. It is found that, in general, the ultrafast modes can greatly enhance the rate of electron transfer, even by more than an order of magnitude, over the rate obtained by using only the slow overdamped modes usually considered. For water, this acceleration of the rate can be attributed to the high-frequency intermolecular vibrational and librational modes. For a weakly adiabatic reaction, the rate is virtually indistinguishable from the rate predicted by the Marcus transition state theory. Another important result is that even in this case of ultrafast underdamped solvation, energy diffusion appears to be efficient so that electron transfer reaction in water is controlled essentially by the barrier crossing dynamics. This is because the reactant well frequency is-directly proportional to the rate of the initial Gaussian decay of the solvation time correlation function. As a result, the value of the friction at the reactant well frequency rarely falls below the value required for the Kramers turnover except when the polarizability of the water molecules may be neglected. On the other hand, in acetonitrile, the rate of electron transfer reaction is found to be controlled by the energy diffusion dynamics, although a significant contribution to the rate comes also from the barrier crossing rate. Therefore, the present study calls for a need to understand the relaxation of the high-frequency modes in dipolar liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed investigation of viscosity dependence of the isomerization rate is carried out for continuous potentials by using a fully microscopic, self-consistent mode-coupling theory calculation of both the friction on the reactant and the viscosity of the medium. In this calculation we avoid approximating the short time response by the Enskog limit, which overestimates the friction at high frequencies. The isomerization rate is obtained by using the Grote-Hynes formula. The viscosity dependence of the rate has been investigated for a large number of thermodynamic state points. Since the activated barrier crossing dynamics probes the high-frequency frictional response of the liquid, the barrier crossing rate is found to be sensitive to the nature of the reactant-solvent interaction potential. When the solute-solvent interaction is modeled by a 6-12 Lennard-Jones potential, we find that over a large variation of viscosity (eta), the rate (k) can indeed be fitted very well to a fractional viscosity dependence: (k similar to eta(-alpha)), with the exponent alpha in the range 1 greater than or equal to alpha >0. The calculated values of the exponent appear to be in very good agreement with many experimental results. In particular, the theory, for the first time, explains the experimentally observed high value of alpha even at the barrier frequency, omega(b). similar or equal to 9 X 10(12) s(-1) for the isomerization reaction of 2-(2'-propenyl)anthracene in liquid eta-alkanes. The present study can also explain the reason for the very low value of vb observed in another study for the isomerization reaction of trans-stilbene in liquid n-alkanes. For omega(b) greater than or equal to 2.0 X 10(13) s(-1), we obtain alpha similar or equal to 0, which implies that the barrier crossing rate becomes identical to the transition-state theory predictions. A careful analysis of isomerization reaction dynamics involving large amplitude motion suggests that the barrier crossing dynamics itself may become irrelevant in highly viscous liquids and the rate might again be coupled directly to the viscosity. This crossover is predicted to be strongly temperature dependent and could be studied by changing the solvent viscosity by the application of pressure. (C) 1999 American Institute of Physics. [S0021-9606(9950514-X].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We find that at low temperature water, large amplitude (similar to 60 degrees) rotational jumps propagate like a string, with the length of propagation increasing with lowering temperature. The strings are formed by mobile 5-coordinated water molecules which move like a Glarum defect (J. Chem. Phys., 1960, 33, 1371), causing water molecules on the path to change from 4-coordinated to 5-coordinated and again back to 4-coordinated water, and in the process cause the tagged water molecule to jump, by following essentially the Laage-Hynes mechanism (Science, 2006, 311, 832-835). The effects on relaxation of the propagating defect causing large amplitude jumps are manifested most dramatically in the mean square displacement (MSD) and also in the rotational time correlation function of the O-H bond of the molecule that is visited by the defect (transient transition to the 5-coordinated state). The MSD and the decay of rotational time correlation function, both remain quenched in the absence of any visit by the defect, as postulated by Glarum long time ago. We establish a direct connection between these propagating events and the known thermodynamic and dynamic anomalies in supercooled water. These strings are found largely in the regions that surround the relatively rigid domains of 4-coordinated water molecules. The propagating strings give rise to a noticeable dynamical heterogeneity, quantified here by a sharp rise in the peak of the four-point density response function, chi(4)(t). This dynamics heterogeneity is also responsible for the breakdown of the Stokes-Einstein relation.