56 resultados para Huntington family (Simon Huntington, 1583-1633)
em Indian Institute of Science - Bangalore - Índia
Resumo:
Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. Biological significance: In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock -in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock -in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene exptessions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh-Qm (Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.
Resumo:
Bi5Ti3FeO15 and Bi7Ti3Fe3O21 which are n=4 and n=6 members of the family of oxides of the general formula (Bi2O2)2+(An−1BnO3n+1)2− show unusual superstructures, possibly due to cation ordering. Bi5Ti3FeO15; Bi7Ti3Fe3O21; oxides.
Resumo:
Compounds of the Y3-x Ba3+x Cu6O14+δ system, which YBa2Cu3O7-δ (x = 1) is member, have been prepared. A relatively low temperature nitrate decomposition method gives almost single phase compounds with tetragonal structure. The phases are metastable and show superconducting transitions (zero-resistance) around 50K.
Resumo:
N-linked glycosylation has a profound effect on the proper folding, oligomerization and stability of glycoproteins. These glycans impart many properties to proteins that may be important for their proper functioning, besides having a tendency to exert a chaperone-like effect on them. Certain glycosylation sites in a protein however, are more important than other sites for their function and stability. It has been observed that some N-glycosylation sites are conserved over families of glycoproteins over evolution, one such being the tyrosinase related protein family. The role of these conserved N-glycosylation sites in their trafficking, sorting, stability and activity has been examined here. By scrutinizing the different glycosylation sites on this family of glycoproteins it was inferred that different sites in the same family of polypeptides can perform distinct functions and conserved sites across the paralogues may perform diverse functions.
Resumo:
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.
Resumo:
A new family of low-power logic circuits, employing a multiemitter transistor input circuit and a modified complementary p-n-p n-p-n output stage, having almost the same performance as standard TTL circuits and suitable for IC use, is reported in this correspondence.
Resumo:
Individual copies of tRNA1Gly from within the multigene family in Bombyx mori could be classified based on in vitro transcription in homologous nuclear extracts into three categories of highly, moderately, or weakly transcribed genes. Segregation of the poorly transcribed gene copies 6 and 7, which are clustered in tandem within 425 base pairs, resulted in enhancement of their individual transcription levels, but the linkage itself had little influence on the transcriptional status. For these gene copies, when fused together generating a single coding region, transcription was barely detectable, which suggested the presence of negatively regulating elements located in the far flanking sequences. They exerted the silencing effect on transcription overriding the activity of positive regulatory elements. Systematic analysis of deletion, chimeric, and mutant constructs revealed the presence of a sequence element TATATAA located beyond 800 nucleotides upstream to the coding region acting as negative modulator, which when mutated resulted in high level transcription. Conversely, a TATATAA motif reintroduced at either far upstream or far downstream flanking regions exerted a negative effect on transcription. The location of cis-regulatory sequences at such farther distances from the coding region and the behavior of TATATAA element as negative regulator reported here are novel. These element(s) could play significant roles in activation or silencing of genes from within a multigene family, by recruitment or sequestration of transcription factors.
Resumo:
The product of the bglG gene of Escherichia coli was among the first bacterial antiterminators to be identified and characterized. Since the elucidation ten years ago of its role in the regulation of the bgl operon of E. coli,a large number of homologies have been discovered in both Gram-positive and Gram-negative bacteria. Often the homologues of BglG in other organisms are also involved in regulating β-glucoside utilization. Surprisingly, in many cases, they mediate antitermination to regulate a variety of other catabolic functions. Because of the high degree of conservation of the cis-acting regulatory elements, antiterminators from one organism can function in another. Generally the antiterminator protein itself is negatively regulated by phosphorylation by a component of the phosphotransferase system. This family of proteins thus represents a highly evolved regulatory system that is conserved across evolutionarily distant genuses.
Resumo:
Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.
Resumo:
A solvothermal reaction of ZnO, boric acid (B(OH)(3)), and aliphatic airlines in a water-pyridine mixture gave four zinc borate phases of different dimensionalities: [Zn(B4O8H2)(C3H10N2)], I (one-dimensional); [Zn(B4O8H2)(C3H10N2)] H2O, II (two-dimensional); [Zn(B5O10H3)(C10H24N4)]center dot H2O, III (two-dimensional): and [Zn-2(B8O15H2)(C3H10N2)(2)], IV (three-dimensional). The structures are formed by the connectivity involving polyborate chains and layers with Zn2+ species. In all the compounds, the amine molecules act its file ligand binding either the same or different zn centers. The formation of two different structures, II and IV, from the same amine by varying the reaction time is noteworthy. Transformation studies on II indicate that the formation of IV. from II, is facile and has been investigated for the first time. Two of file compounds, I and III, exhibit activity for second-order nonlinear optical behavior. The UV exposure of the sample indicates the absorption of all the UV radiation suggesting that the zinc borate compounds could be exploited for UV-blocking applications. The compounds have been characterized by powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, UV-vis, photoluminescence, and NMR studies.
Resumo:
Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.