11 resultados para Human right to water

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on free convection heat transfer to water and mercury are collected using a test rig in vertical annuli of three radii ratios, the walls of which are maintained at uniform temperatures. A theoretical analysis of the boundary layer equations has been attempted using local similarity transformation and double boundary layer approach. Correlations derived from the present theoretical analysis are compared with the analysis and the experimental data available in literature for non-metallic fluids and also with the present experimental data on water and mercury. Generalised correlations are set up for expressing the ratio of heat transferred by convection to the heat transferred by pure conduction and Nusselt's number, in terms of Grashof, Rayleigh and Prandtl numbers, based on the theoretical analysis and the present data on mercury and water. The present generalised correlations agree with the reported and present data for non-metallic fluids and liquid metals with an average deviation of 9% and maximum deviation of ± 13.7%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently implicated heat shock protein 90 from Plasmodium falciparum (PfHsp90) as a potential drug target against malaria. Using inhibitors specific to the nucleotide binding domain of Hsp90, we have shown potent growth inhibitory effects on development of malarial parasite in human erythrocytes. To gain better understanding of the vital role played by PfHsp90 in parasite growth, we have modeled its three dimensional structure using recently described full length structure of yeast Hsp90. Sequence similarity found between PfHsp90 and yeast Hsp90 allowed us to model the core structure with high confidence. The superimposition of the predicted structure with that of the template yeast Hsp90 structure reveals an RMSD of 3.31 angstrom. The N-terminal and middle domains showed the least RMSD (1.76 angstrom) while the more divergent C-terminus showed a greater RMSD (2.84 angstrom) with respect to the template. The structure shows overall conservation of domains involved in nucleotide binding, ATPase activity, co-chaperone binding as well as inter-subunit interactions. Important co-chaperones known to modulate Hsp90 function in other eukaryotes are conserved in malarial parasite as well. An acidic stretch of amino acids found in the linker region, which is uniquely extended in PfHsp90 could not be modeled in this structure suggesting a flexible conformation. Our results provide a basis to compare the overall structure and functional pathways dependent on PfHsp90 in malarial parasite. Further analysis of differences found between human and parasite Hsp90 may make it possible to design inhibitors targeted specifically against malaria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oil droplets are dispersed in water by an anionic urfactant to form an emulsion. The lubricity of this emulsion in steel/steel interaction is explored in a ball on flat nanotribometer. The droplet size and charge are measured using dynamic light scattering, while the substrate charge density is estimated using the pH titration method. These data are combined to calculate the DLVO forces for the droplets generated for a range of surfactant concentration and two oil to water volume ratios. The droplets have a clear bi-modal size distribution. The study shows that the smaller droplets which experience weak repulsion are situated (at the highest DLVO barrier) much closer to the substrate than thebigger droplets, which experience the same DLVO force, are. We suggest that the smaller droplets thus play a more important role in lubricity than what the bigger droplets do. The largest volume of such small droplets occurs in the 0.5 mM-1 mM range of surfactant concentration and 1% oil to water volume ratio, where the coefficient of friction is also observed to be the least. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer composites are generally filled with either fibrous or particulate materials to improve the mechanical properties. In choosing the fillers one looks for materials that are inexpensive and available in abundance, in order to realize a cost reduction also. Also, often these fibres/fillers are treated to improve the matrix adhesion and thereby mechanical properties. The present study is focussed on the influence of water ingression in such filler-modified composites and the attendant changes in the compressive properties. The changes in property effected following exposure to aqueous media and the influence interface modification has on the scenario is emphasized in the work. It is seen that for plain epoxy and fly ash filled systems the strengths are increased following exposure to aqueous media. The composites with surface-treated ash particles, on the other hand, record a drop in the values. Modulus values show are increased to varying degree in unfilled and filled systems. The study also includes a fractographic analysis of the tested samples with and without exposure to water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conservation of natural resources through sustainable ecosystem management and development is the key to our secured future. The management of ecosystem involves inventorying and monitoring, and applying integrated technologies, methodologies and interdisciplinary approaches for its conservation. Hence, now it is even more critical than ever before for the humans to be environmentally literate. To realise this vision, both ecological and environmental education must become a fundamental part of the education system at all levels of education. Currently, it is even more critical than ever before for the humankind as a whole to have a clear understanding of environmental concerns and to follow sustainable development practices. The degradation of our environment is linked to continuing problems of pollution, loss of forest, solid waste disposal, and issues related to economic productivity and national as well as ecological security. Environmental management has gained momentum in the recent years with the initiatives focussing on managing environmental hazards and preventing possible disasters. Environmental issues make better sense, when one can understand them in the context of one’s own cognitive sphere. Environmental education focusing on real-world contexts and issues often begins close to home, encouraging learners to understand and forge connections with their immediate surroundings. The awareness, knowledge, and skills needed for these local connections and understandings provide a base for moving out into larger systems, broader issues, and a more sophisticated comprehension of causes, connections, and consequences. Environmental Education Programme at CES in collaboration with Karnataka Environment Research Foundation (KERF) referred as ‘Know your Ecosystem’ focuses on the importance of investigating the ecosystems within the context of human influences, incorporating an examination of ecology, economics, culture, political structure, and social equity as well as natural processes and systems. The ultimate goal of environment education is to develop an environmentally literate public. It needs to address the connection between our conception and practice of education and our relationship as human cultures to life-sustaining ecological systems. For each environmental issue there are many perspectives and much uncertainty. Environmental education cultivates the ability to recognise uncertainty, envision alternative scenarios, and adapt to changing conditions and information. These knowledge, skills, and mindset translate into a citizenry who is better equipped to address its common problems and take advantage of opportunities, whether environmental concerns are involved or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our ability to regulate behavior based on past experience has thus far been examined using single movements. However, natural behavior typically involves a sequence of movements. Here, we examined the effect of previous trial type on the concurrent planning of sequential saccades using a unique paradigm. The task consisted of two trial types: no-shift trials, which implicitly encouraged the concurrent preparation of the second saccade in a subsequent trial; and target-shift trials, which implicitly discouraged the same in the next trial. Using the intersaccadic interval as an index of concurrent planning, we found evidence for context-based preparation of sequential saccades. We also used functional MRI-guided, single-pulse, transcranial magnetic stimulation on human subjects to test the role of the supplementary eye field (SEF) in the proactive control of sequential eye movements. Results showed that (i) stimulating the SEF in the previous trial disrupted the previous trial type-based preparation of the second saccade in the nonstimulated current trial, (ii) stimulating the SEF in the current trial rectified the disruptive effect caused by stimulation in the previous trial, and (iii) stimulating the SEF facilitated the preparation of second saccades based on previous trial type even when the previous trial was not stimulated. Taken together, we show how the human SEF is causally involved in proactive preparation of sequential saccades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We highlight the need for a comprehensive, multi-disciplinary approach for the development of cost-effective water remediation methods. Combining ``chimie douce'' and green chemical principles seems essential for making these technologies economically viable and socially relevant (especially in the developing world). A comprehensive approach to water remediation will take into account issues such as nanotoxicity, chemical yield, cost, and ease of deployment in reactors. By considering technological challenges that lie ahead, we will attempt to identify directions that are likely to make photocatalytic water remediation a more global technology than it currently is. (C) 2013 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pressure-swirl nozzles (simplex nozzles) are used in various field applications such as aero-engines, power generation, spray painting and agricultural irrigation. For this particular nozzle, research in the past decade has dealt with the development of numerical models for predicting droplet distribution profiles. Although these results have been valuable, the experimental results have been contradictory, therefore fundamental understanding of the influence of properties in nozzle is important. This paper experimentally investigates the effect of surfactants on breakup and coalescence. Since most of the fuels and biofuels have low surface tension compared to water, a comparative analysis between a surfactant solution and a liquid fuel is imperative. For this experimental study, a simplex nozzle characterized as flow number 0.4 will be utilized. The injection pressures will range from 0.3 - 4Mpa while altering the surface tension from 72 to 28mN/m. By applying Phase Doppler Particle Anemometry (PDPA) which is a non-intrusive laser diagnostic technique, the differences in spray characteristics due to spray surface tension can be highlighted. The average droplet diameter decreases for a low surface tension fluid in the axial direction in comparison to pure water. The average velocity of droplets is surprisingly lower in the same spray zone. Measurements made in the radial direction show no significant changes, but at the locations close to the nozzle, water droplets have larger diameter and velocity. The results indicate the breakup and coalescence regimes have been altered when surface tension is lowered. A decrease in surface tension alters the breakup length while increasing the spray angle. Moreover, higher injection pressure shortens the breakup length and decrease in overall diameter of the droplets. By performing this experimental study the fundamentals of spray dynamics, such as spray formation, liquid breakup length, and droplet breakup regimes can be observed as a function of surface tension and how a surrogate fuel compares with a real fuel for experimental purposes. This knowledge potentially will lead to designing a better atomizer or new biofuels.