6 resultados para Human memory
em Indian Institute of Science - Bangalore - Índia
Resumo:
An associative memory with parallel architecture is presented. The neurons are modelled by perceptrons having only binary, rather than continuous valued input. To store m elements each having n features, m neurons each with n connections are needed. The n features are coded as an n-bit binary vector. The weights of the n connections that store the n features of an element has only two values -1 and 1 corresponding to the absence or presence of a feature. This makes the learning very simple and straightforward. For an input corrupted by binary noise, the associative memory indicates the element that is closest (in terms of Hamming distance) to the noisy input. In the case where the noisy input is equidistant from two or more stored vectors, the associative memory indicates two or more elements simultaneously. From some simple experiments performed on the human memory and also on the associative memory, it can be concluded that the associative memory presented in this paper is in some respect more akin to a human memory than a Hopfield model.
Resumo:
This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.
Resumo:
As rapid brain development occurs during the neonatal period, environmental manipulation during this period may have a significant impact on sleep and memory functions. Moreover, rapid eye movement (REM) sleep plays an important role in integrating new information with the previously stored emotional experience. Hence, the impact of early maternal separation and isolation stress (MS) during the stress hyporesponsive period (SHRP) on fear memory retention and sleep in rats were studied. The neonatal rats were subjected to maternal separation and isolation stress during postnatal days 5-7 (6 h daily/3 d). Polysomnographic recordings and differential fear conditioning was carried out in two different sets of rats aged 2 months. The neuronal replay during REM sleep was analyzed using different parameters. MS rats showed increased time in REM stage and total sleep period also increased. MS rats showed fear generalization with increased fear memory retention than normal control (NC). The detailed analysis of the local field potentials across different time periods of REM sleep showed increased theta oscillations in the hippocampus, amygdala and cortical circuits. Our findings suggest that stress during SHRP has sensitized the hippocampus amygdala cortical loops which could be due to increased release of corticosterone that generally occurs during REM sleep. These rats when subjected to fear conditioning exhibit increased fear memory and increased, fear generalization. The development of helplessness, anxiety and sleep changes in human patients, thus, could be related to the reduced thermal, tactile and social stimulation during SHRP on brain plasticity and fear memory functions. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we propose a H.264/AVC compressed domain human action recognition system with projection based metacognitive learning classifier (PBL-McRBFN). The features are extracted from the quantization parameters and the motion vectors of the compressed video stream for a time window and used as input to the classifier. Since compressed domain analysis is done with noisy, sparse compression parameters, it is a huge challenge to achieve performance comparable to pixel domain analysis. On the positive side, compressed domain allows rapid analysis of videos compared to pixel level analysis. The classification results are analyzed for different values of Group of Pictures (GOP) parameter, time window including full videos. The functional relationship between the features and action labels are established using PBL-McRBFN with a cognitive and meta-cognitive component. The cognitive component is a radial basis function, while the meta-cognitive component employs self-regulation to achieve better performance in subject independent action recognition task. The proposed approach is faster and shows comparable performance with respect to the state-of-the-art pixel domain counterparts. It employs partial decoding, which rules out the complexity of full decoding, and minimizes computational load and memory usage. This results in reduced hardware utilization and increased speed of classification. The results are compared with two benchmark datasets and show more than 90% accuracy using the PBL-McRBFN. The performance for various GOP parameters and group of frames are obtained with twenty random trials and compared with other well-known classifiers in machine learning literature. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
This paper discusses a novel high-speed approach for human action recognition in H.264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of the proposed work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can result in reduced hardware utilization and faster recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust to outdoor as well as indoor testing scenarios. We have evaluated the performance of the proposed method on two benchmark action datasets and achieved more than 85 % accuracy. The proposed algorithm classifies actions with speed (> 2,000 fps) approximately 100 times faster than existing state-of-the-art pixel-domain algorithms.
Resumo:
Mutations in the human microtubule-associated protein tau (hMAPT) gene including R406W and V337M result in autosomal dominant neurodegenerative disorder. These mutations lead to hyperphosphorylation and aggregation of Tau protein which is a known genetic factor underlying development of Alzheimer's disease (AD). In the present study, transgenic Drosophila models of AD expressing wild-type and mutant forms of hMAPT exhibit a progressive neurodegeneration which was manifested in the form of early death and impairment of cognitive ability. Moreover, they were also found to have significantly decreased activity of neurotransmitter enzymes accompanied by decreased cellular endogenous antioxidant profile. The extent of neurodegeneration, memory impairment, and biochemical profiles was different in the tau transgenic strains which indicate multiple molecular and cellular responses underlie each particular form of hMAPT.