7 resultados para Human factors engineering.
em Indian Institute of Science - Bangalore - Índia
Resumo:
Among the human factors that influence safe driving, visual skills of the driver can be considered fundamental. This study mainly focuses on investigating the effect of visual functions of drivers in India on their road crash involvement. Experiments were conducted to assess vision functions of Indian licensed drivers belonging to various organizations, age groups and driving experience. The test results were further related to the crash involvement histories of drivers through statistical tools. A generalized linear model was developed to ascertain the influence of these traits on propensity of crash involvement. Among the sampled drivers, colour vision, vertical field of vision, depth perception, contrast sensitivity, acuity and phoria were found to influence their crash involvement rates. In India, there are no efficient standards and testing methods to assess the visual capabilities of drivers during their licensing process and this study highlights the need for the same.
Resumo:
The questions that one should answer in engineering computations - deterministic, probabilistic/randomized, as well as heuristic - are (i) how good the computed results/outputs are and (ii) how much the cost in terms of amount of computation and the amount of storage utilized in getting the outputs is. The absolutely errorfree quantities as well as the completely errorless computations done in a natural process can never be captured by any means that we have at our disposal. While the computations including the input real quantities in nature/natural processes are exact, all the computations that we do using a digital computer or are carried out in an embedded form are never exact. The input data for such computations are also never exact because any measuring instrument has inherent error of a fixed order associated with it and this error, as a matter of hypothesis and not as a matter of assumption, is not less than 0.005 per cent. Here by error we imply relative error bounds. The fact that exact error is never known under any circumstances and any context implies that the term error is nothing but error-bounds. Further, in engineering computations, it is the relative error or, equivalently, the relative error-bounds (and not the absolute error) which is supremely important in providing us the information regarding the quality of the results/outputs. Another important fact is that inconsistency and/or near-consistency in nature, i.e., in problems created from nature is completely nonexistent while in our modelling of the natural problems we may introduce inconsistency or near-inconsistency due to human error or due to inherent non-removable error associated with any measuring device or due to assumptions introduced to make the problem solvable or more easily solvable in practice. Thus if we discover any inconsistency or possibly any near-inconsistency in a mathematical model, it is certainly due to any or all of the three foregoing factors. We do, however, go ahead to solve such inconsistent/near-consistent problems and do get results that could be useful in real-world situations. The talk considers several deterministic, probabilistic, and heuristic algorithms in numerical optimisation, other numerical and statistical computations, and in PAC (probably approximately correct) learning models. It highlights the quality of the results/outputs through specifying relative error-bounds along with the associated confidence level, and the cost, viz., amount of computations and that of storage through complexity. It points out the limitation in error-free computations (wherever possible, i.e., where the number of arithmetic operations is finite and is known a priori) as well as in the usage of interval arithmetic. Further, the interdependence among the error, the confidence, and the cost is discussed.
Resumo:
In the context of the role of multiple physical factors in dictating stem cell fate, the present paper demonstrates the effectiveness of the intermittently delivered external electric field stimulation towards switching the stem cell fate to specific lineage, when cultured in the absence of biochemical growth factors. In particular, our findings present the ability of human mesenchymal stem cells (hMSCs) to respond to the electric stimuli by adopting extended neural-like morphology on conducting polymeric substrates. Polyaniline (PANI) is selected as the model system to demonstrate this effect, as the electrical conductivity of the polymeric substrates can be systematically tailored over a broad range (10(-9) to 10 S/cm) from highly insulating to conducting by doping with varying concentrations (10(-5) to 1 M) of HCl. On the basis of the culture protocol involving the systematic delivery of intermittent electric field (dc) stimulation, the parametric window of substrate conductivity and electric field strength was established to promote significant morphological extensions, with minimal cellular damage. A time dependent morphological change in hMSCs with significant filopodial elongation was observed after 7 days of electrically stimulated culture. Concomitant with morphological changes, a commensurate increase in the expression of neural lineage commitment markers such as nestin and PI tubulin was recorded from hMSCs grown on highly conducting substrates, as revealed from the mRNA expression analysis using Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) as well as by immune-fluorescence imaging. Therefore, the present work establishes the key role of intermittent and systematic delivery of electric stimuli as guidance cues in promoting neural-like differentiation of hMSCs, when grown on electroconductive substrates. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Thoracic aortic dissections are associated with a significant risk of morbidity and mortality, and currently challenge our understanding of the biomechanical factors leading to their initiation and propagation. We quantified the biaxial mechanical properties of human type A dissections (n = 16) and modeled the stress-strain data using a microstructurally motivated form of strain energy function. Our results show significantly higher stiffness for dissected tissues as compared to control aorta without arterial disease. Higher stiffness of dissected tissues did not, however, correlate with greater aortic diameter measured prior to surgery nor were there any age dependent differences in the tissue properties.
Resumo:
Climate change is expected to influence extreme precipitation which in turn might affect risks of pluvial flooding. Recent studies on extreme rainfall over India vary in their definition of extremes, scales of analyses and conclusions about nature of changes in such extremes. Fingerprint-based detection and attribution (D&A) offer a formal way of investigating the presence of anthropogenic signals in hydroclimatic observations. There have been recent efforts to quantify human effects in the components of the hydrologic cycle at large scales, including precipitation extremes. This study conducts a D&A analysis on precipitation extremes over India, considering both univariate and multivariate fingerprints, using a standardized probability-based index (SPI) from annual maximum one-day (RX1D) and five-day accumulated (RX5D) rainfall. The pattern-correlation based fingerprint method is used for the D&A analysis. Transformation of annual extreme values to SPI and subsequent interpolation to coarser grids are carried out to facilitate comparison between observations and model simulations. Our results show that in spite of employing these methods to address scale and physical processes mismatch between observed and model simulated extremes, attributing changes in regional extreme precipitation to anthropogenic climate change is difficult. At very high (95%) confidence, no signals are detected for RX1D, while for the RX5D and multivariate cases only the anthropogenic (ANT) signal is detected, though the fingerprints are in general found to be noisy. The findings indicate that model simulations may underestimate regional climate system responses to increasing human forcings for extremes, and though anthropogenic factors may have a role to play in causing changes in extreme precipitation, their detection is difficult at regional scales and not statistically significant. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The expression of a biologically active human IFN4 depends on the presence of a frameshift deletion polymorphism within the first exon of the interferon lambda 4 (IFNL4) gene. In this report, we use the lung carcinoma-derived cell line, A549, which is genetically viable to express a functional IFN4, to address transcriptional requirements of the IFNL4 gene. We show that the GC-rich DNA-binding transcription factor (TF) specificity protein 1 (Sp1) is recruited to the IFNL4 promoter and has a role in induction of gene expression upon stimulation with viral RNA mimic poly(I:C). By using RNAi and overexpression strategies, we also show key roles in IFNL4 gene expression for the virus-inducible TFs, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-B), IFN regulatory factor 3 (IRF3), and IRF7. Interestingly, we also observe that overexpression of IFN4 influences IFNL4 promoter activity, which may further be dependent on the retinoic acid-inducible gene-I (RIG-I)-like receptor pathway. Together, our work for the first time reports on the functional characterization of the human IFNL4 promoter.
Resumo:
Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.