21 resultados para Housing vacancy
em Indian Institute of Science - Bangalore - Índia
Resumo:
We report ab initio calculations for the band dispersions and total as well as partial densities of states for vacancy ordered, clustered spinels, GaMo4S8 and GaV4S8. Results are presented for the high temperature cubic phase for both compounds. Additionally, we discuss results of similar calculations for GaMo4S8 in an idealized cubic structure, as well as the nonmagnetic and the ferromagnetic states of the low temperature rhombohedral structure. Comparison of these results allows us to discuss the unusual aspects of the electronic structure of this interesting class of compounds, and provide estimates of the crystal-field and exchange splitting strengths.
Resumo:
The metastable vacancy ordered phases observed in aluminium transition metal alloys on rapid solidification or vapour deposition can be considered as a periodic arrangement of a truncated quasiperiodic string based on the Fibonacci sequence along the left angle bracket111right-pointing angle bracket stacking direction of the original CsCl cell. Using the projection formalism developed in the context of quasicrystals, the diffraction patterns of the vacancy ordered phases are calculated for both commensurate and incommensurate projection from a periodic cubic cell in four dimensions. These are compared with experimentally observed patterns. It is shown that at increasingly longer periodicity the patterns from commensurate crystals become indistinguishable from the truly quasiperiodic one. It is suggested that there is a strong link between vacancy ordered phases and quasicrystals.
Resumo:
Isochronal and isothermal ageing experiments have been carried out to determine the influence of 0.01 at. % addition of a second solute on the clustering rate in the quenched Al-4,4 a/o Zn alloy. The influence of quenching and ageing temperatures has been interpreted to obtain the apparent vacancy formation and vacancy migration energies in the various ternary alloys. Using a vacancy-aided clustering model the following values of binding free energy have been evaluated: Ce-0.18; Dy-0.24; Fe-0.18; Li-0.25; Mn-0.27; Nb-0.18; Pt-0.23; Sb-0.21; Si-0.30; Y-0.25; and Yb-0.23 (± 0.02 eV). These binding energy values refer to that between a solute atom and a single vacancy. The values of vacancy migration energy (c. 0.4 eV) and the experimental activation energy for solute diffusion (c. 1.1 eV) are unaffected by the presence of the ternary atoms in the Al-Zn alloy.
Resumo:
Al-4.4 a/oZn and Al-4.4 a/oZn with Ag, Ce, Dy, Li, Nb, Pt, Y, or Yb, alloys have been investigated by resistometry with a view to study the solute-vacancy interactions and clustering kinetics in these alloys. Solute-vacancy binding energies have been evaluated for all these elements by making use of appropriate methods of evaluation. Ag and Dy additions yield some interesting results and these have been discussed in the thesis. Solute-vacancy binding energy values obtained here have been compared with other available values and discussed. A study of the type of interaction between vacancies and solute atoms indicates that the valency effect is more predominant than the elastic effect.
Resumo:
An attempt is made in this paper to arrive at a methodology for generating building technologies appropriate to rural housing. An evaluation of traditional modern' technologies currently in use reveals the need for alternatives. The lacunae in the presently available technologies also lead to a definition of rural housing needs. It is emphasised that contending technologies must establish a 'goodness of fit' between the house form and the pattern of needs. A systems viewpoint which looks at the dynamic process of building construction and the static structure of the building is then suggested as a means to match the technologies to the needs. The process viewpoint emphasises the role of building materials production and transportation in achieving desired building performances. A couple of examples of technological alternatives like the compacted soil block and the polythene-stabilised soil roof covering are then discussed. The static structural system viewpoint is then studied to arrive at methodologies of cost reduction. An illustrative analysis is carried out using the dynamic programming technique, to arrive at combinations of alternatives for the building components which lead to cost reduction. Some of the technological options are then evaluated against the need patterns. Finally, a guideline for developments in building technology is suggested
Resumo:
In this study, bulk and multifoil diffusion couple experiments were conducted to examine the interdiffusion process in Ni-Pt and Co-Pt binary alloy systems. Inter-, intrinsic-, and tracer-diffusion coefficients at different temperatures, and as a function of the composition, were estimated by using the experimental data. Results show that in both the alloy systems, Pt is the slower diffusing species, and hence the interdiffusion process is controlled by either Ni or Co. The thermodynamic driving force makes the intrinsic diffusion coefficients of Co and Ni higher in the range of 30-70 at.%. The low activation energy for Co and Ni impurity diffusion in Pt compared with Pt in Ni and Co indicates that the size of the atoms plays an important role. The vacancy wind effects on the diffusion process are examined in detail, and it was demonstrated that its contribution falls within the experimental scatter and hence can be neglected.
Resumo:
We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm(-1) in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy. (C) 2011 American Institute of Physics. [doi:10.1063/1.3654151]
Resumo:
A study has been conducted on a Cu(Sn) solid solution to examine the role of the vacancy wind effect on interdiffusion. First, the interdiffusion and the intrinsic diffusion coefficients are calculated. The trend of the interdiffusion coefficients is explained with the help of the driving force. Following this, the tracer diffusion coefficients of the species are calculated with and without consideration of the vacancy wind effect. We found that the role of the vacancy wind is negligible on the minor element in a dilute solid solution, which is the faster diffusing species in this system and controls the interdiffusion process. However, consideration of this effect is important to understand the diffusion rate of the major element, which is the slower diffusing species in this system.