12 resultados para Historiography of Mathematics
em Indian Institute of Science - Bangalore - Índia
Resumo:
The book of nature is written in the language of mathematics. This quotation, attributed to Galileo, seemed to hold to an unreasonable1 extent in the era of quantum mechanics.
Resumo:
The surface water waves are "modal" waves in which the "physical space" (t, x, y, z) is the product of a propagation space (t, x, y) and a cross space, the z-axis in the vertical direction. We have derived a new set of equations for the long waves in shallow water in the propagation space. When the ratio of the amplitude of the disturbance to the depth of the water is small, these equations reduce to the equations derived by Whitham (1967) by the variational principle. Then we have derived a single equation in (t, x, y)-space which is a generalization of the fourth order Boussinesq equation for one-dimensional waves. In the neighbourhood of a wave froat, this equation reduces to the multidimensional generalization of the KdV equation derived by Shen & Keller (1973). We have also included a systematic discussion of the orders of the various non-dimensional parameters. This is followed by a presentation of a general theory of approximating a system of quasi-linear equations following one of the modes. When we apply this general method to the surface water wave equations in the propagation space, we get the Shen-Keller equation.
Resumo:
We prove a Wiener Tauberian theorem for the L-1 spherical functions on a semisimple Lie group of arbitrary real rank. We also establish a Schwartz-type theorem for complex groups. As a corollary we obtain a Wiener Tauberian type result for compactly supported distributions.
Resumo:
We study t-analogs of string functions for integrable highest weight representations of the affine Kac-Moody algebra A(1)((1)). We obtain closed form formulas for certain t-string functions of levels 2 and 4. As corollaries, we obtain explicit identities for the corresponding affine Hall-Littlewood functions, as well as higher level generalizations of Cherednik's Macdonald and Macdonald-Mehta constant term identities.
Resumo:
In this paper we associate a new geometric invariant to the space of fiat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it tcr the symplectic structure on the space Hom(pi(1)(M), G)/G consisting of representations of the fundamental group pi(1)(M) Of M into G module the conjugate action of G on representations.
Resumo:
Let K be any quadratic field with O-K its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over Q, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r + s + t = rst = 1 in O-K. This Diophantine equation gives an elliptic curve defined over Q with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields we present a simple proof of the fact that except for the ring of integers of Q(i) and Q(root 2), this Diophantine equation is not solvable in the ring of integers of any other quadratic fields, which is already proved in [4].
Resumo:
In the study of holomorphic maps, the term ``rigidity'' refers to certain types of results that give us very specific information about a general class of holomorphic maps owing to the geometry of their domains or target spaces. Under this theme, we begin by studying when, given two compact connected complex manifolds X and Y, a degree-one holomorphic map f :Y -> X is a biholomorphism. Given that the real manifolds underlying X and Y are diffeomorphic, we provide a condition under which f is a biholomorphism. Using this result, we deduce a rigidity result for holomorphic self-maps of the total space of a holomorphic fiber space. Lastly, we consider products X = X-1 x X-2 and Y = Y-1 x Y-2 of compact connected complex manifolds. When X-1 is a Riemann surface of genus >= 2, we show that any non-constant holomorphic map F:Y -> X is of a special form.
Resumo:
Let C be a smooth irreducible projective curve of genus g and L a line bundle of degree d generated by a linear subspace V of H-0 (L) of dimension n+1. We prove a conjecture of D. C. Butler on the semistability of the kernel of the evaluation map V circle times O-C -> L and obtain new results on the stability of this kernel. The natural context for this problem is the theory of coherent systems on curves and our techniques involve wall crossing formulae in this theory.
Resumo:
We set up the theory of newforms of half-integral weight on Gamma(0)(8N) and Gamma(0)(16N), where N is odd and squarefree. Further, we extend the definition of the Kohnen plus space in general for trivial character and also study the theory of newforms in the plus spaces on Gamma(0)(8N), Gamma(0)(16N), where N is odd and squarefree. Finally, we show that the Atkin-Lehner W-operator W-4 acts as the identity operator on S-2k(new)(4N), where N is odd and squarefree. This proves that S-2k(-)(4) = S-2k(4).
Resumo:
We extend Alvarez-Consul and King description of moduli of sheaves over projective schemes to moduli of equivariant sheaves over projective Gamma-schemes, for a finite group Gamma. We introduce the notion of Kronecker-McKay modules and construct the moduli of equivariant sheaves using a natural functor from the category of equivariant sheaves to the category of Kronecker-McKay modules. Following Alvarez-Consul and King, we also study theta functions and homogeneous co-ordinates of moduli of equivariant sheaves.