26 resultados para Hilbert-Smith Conjecture
em Indian Institute of Science - Bangalore - Índia
Resumo:
Let E be an elliptic curve defined over Q and let K/Q be a finite Galois extension with Galois group G. The equivariant Birch-Swinnerton-Dyer conjecture for h(1)(E x(Q) K)(1) viewed as amotive over Q with coefficients in Q[G] relates the twisted L-values associated with E with the arithmetic invariants of the same. In this paper I prescribe an approach to verify this conjecture for a given data. Using this approach, we verify the conjecture for an elliptic curve of conductor 11 and an S-3-extension of Q.
Resumo:
It is conjectured that the hard sphere system has several distinct solid phases, all but one of which are metastable. The bifurcation theory analysis of freezing is extended to the description of the transition between a supercooled liquid and a disordered solid by defining a restricted phase space for the disordered solid. This approach leads to the prediction of a first order transition between a supercooled hard sphere fluid and a disordered metastable hard sphere solid. The results of the calculation are in qualitative agreement with the results of Woodcock's molecular dynamics computer simulations. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
We prove that any arithmetically Gorenstein curve on a smooth, general hypersurface of degree at least 6, is a complete intersection. This gives a characterisation of complete intersection curves on general type hypersurfaces in . We also verify that certain 1-cycles on a general quintic hypersurface are non-trivial elements of the Griffiths group.
Resumo:
The aim of this article is to characterize unitary increment process by a quantum stochastic integral representation on symmetric Fock space. Under certain assumptions we have proved its unitary equivalence to a Hudson-Parthasarathy flow.
Resumo:
This paper deals with some results (known as Kac-Akhiezer formulae) on generalized Fredholm determinants for Hilbert-Schmidt operators on L2-spaces, available in the literature for convolution kernels on intervals. The Kac-Akhiezer formulae have been obtained for kernels which are not necessarily of convolution nature and for domains in R(n).
Resumo:
In this article we consider a semigroup ring R = KGamma] of a numerical semigroup Gamma and study the Cohen- Macaulayness of the associated graded ring G(Gamma) := gr(m), (R) := circle plus(n is an element of N) m(n)/m(n+1) and the behaviour of the Hilbert function H-R of R. We define a certain (finite) subset B(Gamma) subset of F and prove that G(Gamma) is Cohen-Macaulay if and only if B(Gamma) = empty set. Therefore the subset B(Gamma) is called the Cohen-Macaulay defect of G(Gamma). Further, we prove that if the degree sequence of elements of the standard basis of is non-decreasing, then B(F) = empty set and hence G(Gamma) is Cohen-Macaulay. We consider a class of numerical semigroups Gamma = Sigma(3)(i=0) Nm(i) generated by 4 elements m(0), m(1), m(2), m(3) such that m(1) + m(2) = mo m3-so called ``balanced semigroups''. We study the structure of the Cohen-Macaulay defect B(Gamma) of Gamma and particularly we give an estimate on the cardinality |B(Gamma, r)| for every r is an element of N. We use these estimates to prove that the Hilbert function of R is non-decreasing. Further, we prove that every balanced ``unitary'' semigroup Gamma is ``2-good'' and is not ``1-good'', in particular, in this case, c(r) is not Cohen-Macaulay. We consider a certain special subclass of balanced semigroups Gamma. For this subclass we try to determine the Cohen-Macaulay defect B(Gamma) using the explicit description of the standard basis of Gamma; in particular, we prove that these balanced semigroups are 2-good and determine when exactly G(Gamma) is Cohen-Macaulay. (C) 2011 Published by Elsevier B.V.
Resumo:
We give a simple linear algebraic proof of the following conjecture of Frankl and Furedi [7, 9, 13]. (Frankl-Furedi Conjecture) if F is a hypergraph on X = {1, 2, 3,..., n} such that 1 less than or equal to /E boolean AND F/ less than or equal to k For All E, F is an element of F, E not equal F, then /F/ less than or equal to (i=0)Sigma(k) ((i) (n-1)). We generalise a method of Palisse and our proof-technique can be viewed as a variant of the technique used by Tverberg to prove a result of Graham and Pollak [10, 11, 14]. Our proof-technique is easily described. First, we derive an identity satisfied by a hypergraph F using its intersection properties. From this identity, we obtain a set of homogeneous linear equations. We then show that this defines the zero subspace of R-/F/. Finally, the desired bound on /F/ is obtained from the bound on the number of linearly independent equations. This proof-technique can also be used to prove a more general theorem (Theorem 2). We conclude by indicating how this technique can be generalised to uniform hypergraphs by proving the uniform Ray-Chaudhuri-Wilson theorem. (C) 1997 Academic Press.
Resumo:
We generalize the concept of coherent states, traditionally defined as special families of vectors on Hilbert spaces, to Hilbert modules. We show that Hilbert modules over C*-algebras are the natural settings for a generalization of coherent states defined on Hilbert spaces. We consider those Hilbert C*-modules which have a natural left action from another C*-algebra, say A. The coherent states are well defined in this case and they behave well with respect to the left action by A. Certain classical objects like the Cuntz algebra are related to specific examples of coherent states. Finally we show that coherent states on modules give rise to a completely positive definite kernel between two C*-algebras, in complete analogy to the Hilbert space situation. Related to this, there is a dilation result for positive operator-valued measures, in the sense of Naimark. A number of examples are worked out to illustrate the theory. Some possible physical applications are also mentioned.
Resumo:
Let S be a simplicial affine semigroup such that its semigroup ring A = k[S] is Buchsbaum. We prove for such A the Herzog-Vasconcelos conjecture: If the A-module Der(k)A of k-linear derivations of A has finite projective dimension then it is free and hence A is a polynomial ring by the well known graded case of the Zariski-Lipman conjecture.
Resumo:
The cyclic difference sets constructed by Singer are also examples of perfect distinct difference sets (DDS). The Bose construction of distinct difference sets, leads to a relative difference set. In this paper we introduce the concept of partial relative DDS and prove that an optical orthogonal code (OOC) construction due to Moreno et. al., is a partial relative DDS. We generalize the concept of ideal matrices previously introduced by Kumar and relate it to the concepts of this paper. Another variation of ideal matrices is introduced in this paper: Welch ideal matrices of dimension n by (n - 1). We prove that Welch ideal matrices exist only for n prime. Finally, we recast an old conjecture of Golomb on the Welch construction of Costas arrays using the concepts of this paper. This connection suggests that our construction of partial relative difference sets is in a sense, unique
Resumo:
In 2002, Perelman proved the Poincare conjecture, building on the work of Richard Hamilton on the Ricci flow. In this article, we sketch some of the arguments and attempt to place them in a broader dynamical context.
Resumo:
In 2002, Perelman proved the Poincare conjecture, building on the work of Richard Hamilton on the Ricci flow. In this article, we sketch some of the arguments and attempt to place them in a broader dynamical context.
Resumo:
In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.