6 resultados para High-tech companies

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the early stages of operation, high-tech startups need to overcome the liability of newness and manage high degree of uncertainty. Several high-tech startups fail due to inability to deal with skeptical customers, underdeveloped markets and limited resources in selling an offering that has no precedent. This paper leverages the principles of effectuation (a logic of entrepreneurial decision making under uncertainty) to explain the journey from creation to survival of high-tech startups in an emerging economy. Based on the 99tests.com case study, this paper suggests that early stage high-tech startups in emerging economies can increase their probability of survival by adopting the principles of effectuation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Constant stress compression creep experiments were carried out on high purity alumina composites with spinel contents of 8 and 30%, corresponding to a situation with isolated and interconnected second phases. The creep experiments were conducted over a stress and temperature range of 10 to 150 MPa and 1623 to 1723 K, respectively. Analysis of the experimental data indicated that the variation in spinel content did not have any influence on high temperature deformation in the composite. The spinel phase retards grain growth, and this may enhance superplasticity in alumina-spinel composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the details of nonlinear finite element analysis (FEA) of three point bending specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Cracking strength criterion has been used for simulation of crack propagation by conducting nonlinear FEA. The description about FEA using crack strength criterion has been outlined. Bi-linear tension softening relation has been used for modeling the cohesive stresses ahead of the crack tip. Numerical studies have been carried out on fracture analysis of three point bending specimens. It is observed from the studies that the computed values from FEA are in very good agreement with the corresponding experimental values. The computed values of stress vs crack width will be useful for evaluation of fracture energy, crack tip opening displacement and fracture toughness. Further, these values can also be used for crack growth study, remaining life assessment and residual strength evaluation of concrete structural components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the advanced analytical methodologies such as Double- G and Double - K models for fracture analysis of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete. Brief details about characterization and experimentation of HSC, HSC1 and UHSC have been provided. Double-G model is based on energy concept and couples the Griffith's brittle fracture theory with the bridging softening property of concrete. The double-K fracture model is based on stress intensity factor approach. Various fracture parameters such as cohesive fracture toughness (4), unstable fracture toughness (K-Ic(c)), unstable fracture toughness (K-Ic(un)) and initiation fracture toughness (K-Ic(ini)) have been evaluated based on linear elastic fracture mechanics and nonlinear fracture mechanics principles. Double-G and double-K method uses the secant compliance at the peak point of measured P-CMOD curves for determining the effective crack length. Bi-linear tension softening model has been employed to account for cohesive stresses ahead of the crack tip. From the studies, it is observed that the fracture parameters obtained by using double - G and double - K models are in good agreement with each other. Crack extension resistance has been estimated by using the fracture parameters obtained through double - K model. It is observed that the values of the crack extension resistance at the critical unstable point are almost equal to the values of the unstable fracture toughness K-Ic(un) of the materials. The computed fracture parameters will be useful for crack growth study, remaining life and residual strength evaluation of concrete structural components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the details of crack growth study and remaining life assessment of concrete specimens made up of high strength concrete (HSC, HSC1) and ultra high strength concrete (UHSC). Flexural fatigue tests have been conducted on HSC, HSC1 and UHSC beams under constant amplitude loading with a stress ratio of 0.2. It is observed from the studies that (i) the failure patterns of HSC1 and UHSC beams indicate their ductility as the member was intact till the crack propagated up to 90% of the beam depth and (ii) the remaining life decreases with increase of notch depth (iii) the failure of the specimen is influenced by the frequency of loading. A ``Net K'' model has been proposed by using non-linear fracture mechanics principles for crack growth analysis and remaining life prediction. SIF (K) has been computed by using the principle of superposition. SIP due to the cohesive forces applied on the effective crack face inside the process zone has been obtained through Green's function approach by applying bi-linear tension softening relationship to consider the cohesive the stresses acting ahead of the crack tip. Remaining life values have been have been predicted and compared with the corresponding experimental values and observed that they are in good agreement with each other.