19 resultados para Hetaira, Customer
em Indian Institute of Science - Bangalore - Índia
Resumo:
The problem of assigning customers to satellite channels is considered. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of this approach with the standard optimization method is presented to show the advantages of this approach in terms of computation time
Resumo:
Airlines have successfully practiced revenue management over the past four decades and enhanced their revenue. Most of the traditional models that are applied assume that customers buying a high-fare class ticket will not purchase a low-fare class ticket even if it is available. This is not a very realistic assumption and has led to revenue leakage due to customers exhibiting buy-down behaviour. This paper aims at devising a suitable incentive mechanism that would incite the customer to reveal his nature. This helps in reducing revenue leakage. We show that the proposed incentive mechanism is profitable to both the buyer and seller and hence ensures the buyers participation in the mechanism. Journal of the Operational Research Society (2011) 62, 1566-1573. doi:10.1057/jors.2010.57 Published online 11 August 2010
Resumo:
Efficacy of commercial wireless networks can be substantially enhanced through large-scale cooperation among involved entities such as providers and customers. The success of such cooperation is contingent upon the design of judicious resource allocation strategies that ensure that the individuals' payoffs are commensurate to the resources they offer to the coalition. The resource allocation strategies depend on which entities are decision-makers and whether and how they share their aggregate payoffs. Initially, we consider the scenario where the providers are the only decision-makers and they do not share their payoffs. We formulate the resource allocation problem as a nontransferable payoff coalitional game and show that there exists a cooperation strategy that leaves no incentive for any subset of providers to split from the grand coalition, i.e., the core of the game is nonempty. To compute this cooperation strategy and the corresponding payoffs, we subsequently relate this game and its core to an exchange market setting and its equilibrium, which can be computed by several efficient algorithms. Next, we investigate cooperation when customers are also decision-makers and decide which provider to subscribe to based on whether there is cooperation. We formulate a coalitional game in this setting and show that it has a nonempty core. Finally, we extend the formulations and results to the cases where the payoffs are vectors and can be shared selectively.
Resumo:
This paper probes how two small foundries in Belgaum, Karnataka State, India, have achieved technological innovations successfully based on their technological capability and customer needs, enabling them to sail through the competitive environment. This study brought out that technically qualified entrepreneurs of both the foundries have carried out technological innovations, mainly due to their self-motivation and self-efforts. Changing product designs, as desired or directed by the customers, cost reduction, quality improvement and import substitution through reverse engineering are the characteristics of these technological innovations. These incremental innovations have enabled the entrepreneurs of the two foundries to enhance competitiveness, grow in the domestic market and penetrate the international market and grow in size over time.
Resumo:
This paper probes how two small foundries in Belgaum, Karnataka State, India, have achieved technological innovations successfully based on their technological capability and customer needs, enabling them to sail through the competitive environment. This study brought out that technically qualified entrepreneurs of both the foundries have carried out technological innovations, mainly due to their self-motivation and self-efforts. Changing product designs, as desired or directed by the customers, cost reduction, quality improvement and import substitution through reverse engineering are the characteristics of these technological innovations. These incremental innovations have enabled the entrepreneurs of the two foundries to enhance competitiveness, grow in the domestic market and penetrate the international market and grow in size over time.
Resumo:
We discuss a dynamic pricing model which will aid automobile manufacturer in choosing the right price for customer segment. Though there is oligopoly market structure, the customers get "locked" into a particular technology/company which virtually makes the situation akin to a monopoly. There are associated network externalities and positive feedback. The key idea in monopoly pricing lies in extracting the customer surplus by exploiting the respective elasticities of demand. We present a Walrasian general equilibrium approach to determine the segment price. We compare the prices obtained from optimization model with that from Walrasian dynamics. The results are encouraging and can serve as a critical factor in Customer Relationship Management (CRM) and thereby effectively manage the lock-in.
Resumo:
Motivated by certain situations in manufacturing systems and communication networks, we look into the problem of maximizing the profit in a queueing system with linear reward and cost structure and having a choice of selecting the streams of Poisson arrivals according to an independent Markov chain. We view the system as a MMPP/GI/1 queue and seek to maximize the profits by optimally choosing the stationary probabilities of the modulating Markov chain. We consider two formulations of the optimization problem. The first one (which we call the PUT problem) seeks to maximize the profit per unit time whereas the second one considers the maximization of the profit per accepted customer (the PAC problem). In each of these formulations, we explore three separate problems. In the first one, the constraints come from bounding the utilization of an infinite capacity server; in the second one the constraints arise from bounding the mean queue length of the same queue; and in the third one the finite capacity of the buffer reflect as a set of constraints. In the problems bounding the utilization factor of the queue, the solutions are given by essentially linear programs, while the problems with mean queue length constraints are linear programs if the service is exponentially distributed. The problems modeling the finite capacity queue are non-convex programs for which global maxima can be found. There is a rich relationship between the solutions of the PUT and PAC problems. In particular, the PUT solutions always make the server work at a utilization factor that is no less than that of the PAC solutions.
Resumo:
In this paper, we use reinforcement learning (RL) as a tool to study price dynamics in an electronic retail market consisting of two competing sellers, and price sensitive and lead time sensitive customers. Sellers, offering identical products, compete on price to satisfy stochastically arriving demands (customers), and follow standard inventory control and replenishment policies to manage their inventories. In such a generalized setting, RL techniques have not previously been applied. We consider two representative cases: 1) no information case, were none of the sellers has any information about customer queue levels, inventory levels, or prices at the competitors; and 2) partial information case, where every seller has information about the customer queue levels and inventory levels of the competitors. Sellers employ automated pricing agents, or pricebots, which use RL-based pricing algorithms to reset the prices at random intervals based on factors such as number of back orders, inventory levels, and replenishment lead times, with the objective of maximizing discounted cumulative profit. In the no information case, we show that a seller who uses Q-learning outperforms a seller who uses derivative following (DF). In the partial information case, we model the problem as a Markovian game and use actor-critic based RL to learn dynamic prices. We believe our approach to solving these problems is a new and promising way of setting dynamic prices in multiseller environments with stochastic demands, price sensitive customers, and inventory replenishments.
Resumo:
Owing to the increased customer demands for make-to-order products and smaller product life-cycles, today assembly lines are designed to ensure a quick switch-over from one product model to another for companies' survival in market place. The complexity associated with the decisions pertaining to the type of training and number of workers and their exposition to the different tasks especially in the current era of customized production is a serious problem that the managers and the HRD gurus are facing in industry. This paper aims to determine the amount of cross-training and dynamic deployment policy caused by workforce flexibility for a make-to-order assembly. The aforementioned issues have been dealt with by adopting the concept of evolutionary fuzzy system because of the linguistic nature of the attributes associated with product variety and task complexity. A fuzzy system-based methodology is proposed to determine the amount of cross-training and dynamic deployment policy. The proposed methodology is tested on 10 sample products of varying complexities and the results obtained are in line with the conclusions drawn by previous researchers.
Resumo:
Bid optimization is now becoming quite popular in sponsored search auctions on the Web. Given a keyword and the maximum willingness to pay of each advertiser interested in the keyword, the bid optimizer generates a profile of bids for the advertisers with the objective of maximizing customer retention without compromising the revenue of the search engine. In this paper, we present a bid optimization algorithm that is based on a Nash bargaining model where the first player is the search engine and the second player is a virtual agent representing all the bidders. We make the realistic assumption that each bidder specifies a maximum willingness to pay values and a discrete, finite set of bid values. We show that the Nash bargaining solution for this problem always lies on a certain edge of the convex hull such that one end point of the edge is the vector of maximum willingness to pay of all the bidders. We show that the other endpoint of this edge can be computed as a solution of a linear programming problem. We also show how the solution can be transformed to a bid profile of the advertisers.
Resumo:
A customer reported problem (or Trouble Ticket) in software maintenance is typically solved by one or more maintenance engineers. The decision of allocating the ticket to one or more engineers is generally taken by the lead, based on customer delivery deadlines and a guided complexity assessment from each maintenance engineer. The key challenge in such a scenario is two folds, un-truthful (hiked up) elicitation of ticket complexity by each engineer to the lead and the decision of allocating the ticket to a group of engineers who will solve the ticket with in customer deadline. The decision of allocation should ensure Individual and Coalitional Rationality along with Coalitional Stability. In this paper we use game theory to examine the issue of truthful elicitation of ticket complexities by engineers for solving ticket as a group given a specific customer delivery deadline. We formulate this problem as strategic form game and propose two mechanisms, (1) Division of Labor (DOL) and (2) Extended Second Price (ESP). In the proposed mechanisms we show that truth telling by each engineer constitutes a Dominant Strategy Nash Equilibrium of the underlying game. Also we analyze the existence of Individual Rationality (IR) and Coalitional Rationality (CR) properties to motivate voluntary and group participation. We use Core, solution concept from co-operative game theory to analyze the stability of the proposed group based on the allocation and payments.
Resumo:
TNCs having their production bases in developing countries provide increasing opportunity for local SMEs to have subcontracting relationships with these TNCs.Even though some theoretical and a few empirical studies throw light on the nature of assistance provided by TNCs to local SMEs through subcontracting relationships,none of the studies so far analysed the diversity of assistance that subcontracting SMEs of India would be able to obtain from a TNC using quantitative measurement.This paper probes the extent of linkages and diversity of assistance that Indian subcontracting SMEs would be able to obtain from a TNC customer based on primary data from SME subcontractors of a major TNC automobile manufacturer. Statistical analysis of direct assistance revealed that SMEs receive more of product and purchase process assistance. The extent of assistance for their process related,marketing, human resource and financial requirements is low whereas the assistance for their organisational know-how requirements is moderate. The major indirect benefits these SMEs could achieve are knowledge transfer, business volume, superior work culture, reputation and quality improvement.
Resumo:
India has been witnessing an economic boom which fuelling a huge growth in the financial sector especially the banks. The spending power and consumerism has been increasing along with the growth in GDP. The numbers of banks are around 3000 (data according to Reserve Bank of India). With a population base of close to 1.1 billion and a diverse culture that has been dictating the mindset and lifestyle of the population, it has been a challenge for the banks to understand the customer better and hence a the need of the hour is a proper psychographic study of retail banking customers.
Resumo:
This study examines the thermal efficiency of the operation of arc furnace and the effects of harmonics and voltage dips of a factory located near Bangkok. It also attempts to find ways to improve the performance of the arc furnace operation and minimize the effects of both harmonics and voltage dips. A dynamic model of the arc furnace has been developed incorporating both electrical and thermal characteristics. The model can be used to identify potential areas for improvement of the furnace and its operation. Snapshots of waveforms and measurement of RMS values of voltage, current and power at the furnace, at other feeders and at the point of common coupling were recorded. Harmonic simulation program and electromagnetic transient simulation program were used in the study to model the effects of harmonics and voltage dips and to identify appropriate static and dynamic filters to minimize their effects within the factory. The effects of harmonics and voltage dips were identified in records taken at the point of common coupling of another factory supplied by another feeder of the same substation. Simulation studies were made to examine the results on the second feeder when dynamic filters were used in the factory which operated the arc furnace. The methodology used and the mitigation strategy identified in the study are applicable to general situation in a power distribution system where an arc furnace is a part of the load of a customer
Resumo:
There are many applications such as software for processing customer records in telecom, patient records in hospitals, email processing software accessing a single email in a mailbox etc. which require to access a single record in a database consisting of millions of records. A basic feature of these applications is that they need to access data sets which are very large but simple. Cloud computing provides computing requirements for these kinds of new generation of applications involving very large data sets which cannot possibly be handled efficiently using traditional computing infrastructure. In this paper, we describe storage services provided by three well-known cloud service providers and give a comparison of their features with a view to characterize storage requirements of very large data sets as examples and we hope that it would act as a catalyst for the design of storage services for very large data set requirements in future. We also give a brief overview of other kinds of storage that have come up in the recent past for cloud computing.