2 resultados para Hes1

em Indian Institute of Science - Bangalore - Índia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Recent studies have implicated aberrant Notch signaling in breast cancers. Yet, relatively little is known about the pattern of expression of various components of the Notch pathway, or its mechanism of action. To better understand the role of the Notch pathway in breast cancer, we have undertaken a detailed expression analysis of various Notch receptors, their ligands, and downstream targets at different stages of breast cancer progression. Results: We report here that there is a general increase in the expression levels of Notch 1, 2, 4, Jagged1, Jagged2, and Delta-like 4 proteins in breast cancers, with simultaneous upregulation of multiple Notch receptors and ligands in a given cancer tissue. While Notch3 and Delta-like1 were undetectable in normal tissues, moderate to high expression was detected in several cancers. We detected the presence of active, cleaved Notch1, along with downstream targets of the Notch pathway, Hes1/Hes5, in similar to 75% of breast cancers, clearly indicating that in a large proportion of breast cancers Notch signaling is aberrantly activated. Furthermore, we detected cleaved Notch1 and Hes1/5 in early precursors of breast cancers - hyperplasia and ductal carcinoma in situ suggesting that aberrant Notch activation may be an early event in breast cancer progression. Mechanistically, while constitutively active Notch1 alone failed to transform immortalized breast cells, it synergized with the Ras/MAPK pathway to mediate transformation. This cooperation is reflected in vivo, as a subset of cleaved Notch positive tumors additionally expressed phopsho-Erk1/2 in the nuclei. Such cases exhibited high node positivity, suggesting that Notch-Ras cooperation may lead to poor prognosis. Conclusions: High level expression of Notch receptors and ligands, and its increased activation in several breast cancers and early precursors, places Notch signaling as a key player in breast cancer pathogenesis. Its cooperation with the Ras/MAPK pathway in transformation offers combined inhibition of the two pathways as a new modality for breast cancer treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pathogenic mycobacteria have evolved unique strategies to survive within the hostile environment of macrophages. Modulation of key signaling cascades by NO, generated by the host during infection, assumes critical importance in overall cell-fate decisions. We show that NO is a critical factor in Mycobacterium bovis bacillus Calmette-Guérin-mediated Notch1 activation, as the generation of activated Notch1 or expression of Notch1 target genes matrix metalloproteinase-9 (MMP-9) or Hes1 was abrogated in macrophages derived from inducible NO synthase (iNOS) knockout (iNOS(-/-)), but not from wild-type, mice. Interestingly, expression of the Notch1 ligand Jagged1 was compromised in M. bovis bacillus Calmette-Guérin-stimulated iNOS(-/-) macrophages, and loss of Jagged1 expression or Notch1 signaling could be rescued by NO donors. Signaling perturbations or genetic approaches implicated that robust expression of MMP-9 or Hes1 required synergy and cross talk between TLR2 and canonical Notch1-PI3K cascade. Further, CSL/RBP-Jk contributed to TLR2-mediated expression of MMP-9 or Hes1. Correlative evidence shows that, in a murine model for CNS tuberculosis, this mechanism operates in vivo only in brains derived from WT but not from iNOS(-/-) mice. Importantly, we demonstrate the activation of Notch1 signaling in vivo in granulomatous lesions in the brains of Mycobacterium tuberculosis-infected human patients with tuberculous meningitis. Current investigation identifies NO as a pathological link that modulates direct cooperation of TLR2 with Notch1-PI3K signaling or Jagged1 to regulate specific components of TLR2 responses. These findings provide new insights into mechanisms by which Notch1, TLR2, and NO signals are integrated in a cross talk that modulates a defined set of effector functions in macrophages.