172 resultados para Heisenberg group, reflexivity

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the secondary structure of RNA determined by Watson-Crick pairing without pseudo-knots using Milnor invariants of links. We focus on the first non-trivial invariant, which we call the Heisenber invariant. The Heisenberg invariant, which is an integer, can be interpreted in terms of the Heisenberg group as well as in terms of lattice paths. We show that the Heisenberg invariant gives a lower bound on the number of unpaired bases in an RNA secondary structure. We also show that the Heisenberg invariant can predict allosteric structures for RNA. Namely, if the Heisenberg invariant is large, then there are widely separated local maxima (i.e., allosteric structures) for the number of Watson-Crick pairs found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiplier theorem for the sublaplacian on the Heisenberg group is proved using Littlewood-Paley-Stein theory of g-functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove two Paley-Wiener-type theorems for the Heisenberg group. One is for the group Fourier transform which is the analogue of the classical Paley-Wiener theorem. The other one is for the spectral projections associated to the sub-Laplacian

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the analytic extension property of the Schrodinger propagator for the Heisenberg sublaplacian and some related operators. The result for the sublaplacian is proved by interpreting the sublaplacian as a direct integral of an one parameter family of dilated special Hermite operators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to obtain certain characterizations for the image of a Sobolev space on the Heisenberg group under the heat kernel transform. We give three types of characterizations for the image of a Sobolev space of positive order H-m (H-n), m is an element of N-n, under the heat kernel transform on H-n, using direct sum and direct integral of Bergmann spaces and certain unitary representations of H-n which can be realized on the Hilbert space of Hilbert-Schmidt operators on L-2 (R-n). We also show that the image of Sobolev space of negative order H-s (H-n), s(> 0) is an element of R is a direct sum of two weighted Bergman spaces. Finally, we try to obtain some pointwise estimates for the functions in the image of Schwartz class on H-n under the heat kernel transform. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent theorem of S. Alesker, S. Artstein-Avidan and V. Milman characterises the Fourier transform on R-n as essentially the only transform on the space of tempered distributions which interchanges convolutions and pointwise products. In this note we study the image of the Schwartz space on the Heisenberg group under the Fourier transform and obtain a similar characterisation for the Fourier transform on the Heisenberg group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we prove weighted mixed norm estimates for Riesz transforms on the Heisenberg group and Riesz transforms associated to the special Hermite operator. From these results vector-valued inequalities for sequences of Riesz transforms associated to generalised Grushin operators and Laguerre operators are deduced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In these lectures we plan to present a survey of certain aspects of harmonic analysis on a Heisenberg nilmanifold Gammakslash}H-n. Using Weil-Brezin-Zak transform we obtain an explicit decomposition of L-2 (Gammakslash}H-n) into irreducible subspaces invariant under the right regular representation of the Heisenberg group. We then study the Segal-Bargmann transform associated to the Laplacian on a nilmanifold and characterise the image of L-2 (GammakslashH-n) in terms of twisted Bergman and Hermite Bergman spaces.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We characterise higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to multiple Hermite and Laguerre expansions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of expressing a general dynamical variable in quantum mechanics as a function of a primitive set of operators is studied from several points of view. In the context of the Heisenberg commutation relation, the Weyl representation for operators and a new Fourier-Mellin representation are related to the Heisenberg group and the groupSL(2,R) respectively. The description of unitary transformations via generating functions is analysed in detail. The relation between functions and ordered functions of noncommuting operators is discussed, and results closely paralleling classical results are obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article deals with the structure of analytic and entire vectors for the Schrodinger representations of the Heisenberg group. Using refined versions of Hardy's theorem and their connection with Hermite expansions we obtain very precise representation theorems for analytic and entire vectors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Let G be a Kahler group admitting a short exact sequence 1 -> N -> G -> Q -> 1 where N is finitely generated. (i) Then Q cannot be non-nilpotent solvable. (ii) Suppose in addition that Q satisfies one of the following: (a) Q admits a discrete faithful non-elementary action on H-n for some n >= 2. (b) Q admits a discrete faithful non-elementary minimal action on a simplicial tree with more than two ends. (c) Q admits a (strong-stable) cut R such that the intersection of all conjugates of R is trivial. Then G is virtually a surface group. It follows that if Q is infinite, not virtually cyclic, and is the fundamental group of some closed 3-manifold, then Q contains as a finite index subgroup either a finite index subgroup of the three-dimensional Heisenberg group or the fundamental group of the Cartesian product of a closed oriented surface of positive genus and the circle. As a corollary, we obtain a new proof of a theorem of Dimca and Suciu in Which 3-manifold groups are Kahler groups? J. Eur. Math. Soc. 11 (2009) 521-528] by taking N to be the trivial group. If instead, G is the fundamental group of a compact complex surface, and N is finitely presented, then we show that Q must contain the fundamental group of a Seifert-fibered 3-manifold as a finite index subgroup, and G contains as a finite index subgroup the fundamental group of an elliptic fibration. We also give an example showing that the relation of quasi-isometry does not preserve Kahler groups. This gives a negative answer to a question of Gromov which asks whether Kahler groups can be characterized by their asymptotic geometry.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with the Schrodinger equation i partial derivative(s)u(z, t; s) - Lu(z, t; s) = 0; where L is the sub-Laplacian on the Heisenberg group. Assume that the initial data f satisfies vertical bar f(z, t)vertical bar less than or similar to q(alpha)(z, t), where q(s) is the heat kernel associated to L. If in addition vertical bar u(z, t; s(0))vertical bar less than or similar to q(beta)(z, t), for some s(0) is an element of R \textbackslash {0}, then we prove that u(z, t; s) = 0 for all s is an element of R whenever alpha beta < s(0)(2). This result holds true in the more general context of H-type groups. We also prove an analogous result for the Grushin operator on Rn+1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using the density-matrix renormalization-group technique, we study the ground-state phase diagram and other low-energy properties of an isotropic antiferromagnetic spin-1/2 chain with both dimerization and frustration, i.e., an alternation delta of the nearest-neighbor exchanges and a next-nearest-neighbor exchange J(2). For delta = 0, the system is gapless for J(2) < J(2c) and has a gap for J(2) > J(2c) where J(2c) is about 0.241. For J(2) = J(2c) the gap above the ground state grows as delta to the power 0.667 +/- 0.001. In the J(2)-delta plane, there is a disorder line 2J(2) + delta = 1. To the left of this line, the peak in the static structure factor S(q) is at q(max) = pi (Neel phase), while to the right of the line, q(max) decreases from pi to pi/2 as J(2) is increased to large values (spiral phase). For delta = 1, the system is equivalent to two coupled chains as on a ladder and it is gapped for all values of the interchain coupling.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that the Wiener Tauberian property holds for the Heisenberg Motion group TnB