218 resultados para Heat of hydration.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The measured specific heat of normal liquid 3He shows a plateau for 0.15<1 K; below 0.15 K and above 1 K, it rises linearly with temperature. However, the slope on the high-temperature side is very much reduced compared with the free-Fermi-gas value. We explain these features through a microscopic, thermal spin- and density-fluctuation model. The plateau is due to spin fluctuations which have a low characteristic energy in 3He. Because of the low compressibility, the density fluctuations are highly suppressed; this leads to a reduced slope for CV(T) for high temperatures.
Resumo:
Abstract is not available.
Resumo:
A semitheoretical equation for latent heat of vaporization has been derived and tested. The average error in predicting the value at the normal boiling point in the case of about 90 compounds, which includes polar and nonpolar liquids, is about 1.8%. A relation between latent heat of vaporization and surface tension is also derived and is shown to lead to Watson's empirical relation which gives the change of latent heat of vaporization with temperature. This gives a physico-chemical justification for Watson's empirical relation and provides a rapid method of determining latent heats by measuring surface tension.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.
Resumo:
he specific heats of EUNi(5)P(3), an antiferromagnet, and EuNi2P2, a mixed-valence compound, have been measured between 0.4 and 30 K in magnetic fields of, respectively, 0, 0.5, 1, 1.5, 2.5, 5, and 7 T, and 0 and 7 T. In zero field the specific heat of EuNi5P3 shows a h-like anomaly with a maximum at 8.3 K. With increasing field in the range 0-2.5 T, the maximum shifts to lower temperatures, as expected for an antiferromagnet. In higher fields the antiferromagnetic ordering is destroyed and the magnetic part of the specific heat approaches a Schottky anomaly that is consistent with expectations for the crystal-field/Zeeman levels. In low fields and for temperatures between 1.5 acid 5 K the magnetic contribution to the specific heat is proportional to the temperature, indicating a high density of excited states with an energy dependence that is very unusual for an antiferromagnet. The entropy associated with the magnetic ordering is similar to R In8, confirming that only the Eu2+-with J=7/2, S=7/2, L=0-orders below 30 R. In zero field approximately 20% of the entropy occurs above the Neel temperature, consistent. with the usual amount of short-range order observed in antiferromagnets. The hyperfine magnetic field at the Eu nuclei in EUNi(5)P(3) is 33.3 T, in good agreement with a value calculated from electron-nuclear double resonance measurements. For EuNi2P2 the specific heat is nearly field independent and shows no evidence of magnetic ordering or hyperfine fields. The coefficient of the electron contribution to the specific heat is similar to 100 mJ/mol K-2.
Resumo:
The humidity, heat flux and mass flow sensing capability of n-BaTiO3 and its solid solutions were evaluated based on their dissipation characteristics. The cubic/tetragonal phase content of the ceramics seem to play an important role in their sensitivity towards the measurand. The humidity-sensitive characteristics of these perovskites were studied with respect to different moisture sensitive coating materials. The sensor was also used to determine the heat of hydration during the curing process of cements and the mass flow rate of the gases. For all these applications, suitable operating points have been fixed from the highly non-linear I-V characteristics with the retention of good stability and high sensitivity. (C) 1997 Elsevier Science S.A.
Resumo:
We present a magnetic study of the insulating perovskite LaMn1-xTixO3+delta (0
Resumo:
The microscopic electron theory based on the pseudopotential formalism has been applied to the calculation of the heats of mixing and of activities in liquid Al·Sn alloys. The calculated values for both quantities were found to be in reasonable agreement with ,the experimental data.
Resumo:
The critical properties of orthorhombic Pr(0.6)Sr(0.4)MnO(3) single crystals were investigated by a series of static magnetization measurements along the three different crystallographic axes as well as by specific heat measurements. A careful range-of-fitting-analysis of the magnetization and susceptibility data obtained from the modified Arrott plots shows that Pr(0.6)Sr(0.4)MnO(3) has a very narrow critical regime. Nevertheless, the system belongs to the three-dimensional (3D) Heisenberg universality class with short-range exchange. The critical exponents obey Widom scaling and are in excellent agreement with the single scaling equation of state M(H,epsilon) = vertical bar epsilon vertical bar(beta) f(+/-)(H/vertical bar epsilon vertical bar((beta+gamma)); with f(+) for T > T(c) and f(-) for T < T(c). A detailed analysis of the specific heat that account for all relevant contributions allows us to extract and analyze the contribution related to the magnetic phase transition. The specific heat indicates the presence of a linear electronic term at low temperatures and a prominent contribution from crystal field excitations of Pr. A comparison with data from literature for PrMnO(3) shows that a Pr-Mn magnetic exchange is responsible for a sizable shift in the lowest lying excitation.
Resumo:
The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.
Resumo:
The heat of adsorption of methane, ethane, carbon dioxide, R-507a and R-134a on several specimens of microporous activated carbons is derived from experimental adsorption data fitted to the Dubinin-Astakhov equation. These adsorption results are compared with literature data obtained from calorimetric measurements and from the pressure-temperature relation during isosteric heating/cooling. Because the adsorbed phase volume plays an important role, its dependence on temperature and pressure needs to be correctly assessed. In addition, for super-critical gas adsorption, the evaluation of the pseudo-saturation pressure also needs a judicious treatment. Based on the evaluation of carbon dioxide adsorption, it can be seen that sub-critical and super-critical adsorption show different temperature dependences of the isosteric heat of adsorption. The temperature and loading dependence of this property needs to be taken into account while designing practical systems. Some practical implications of these findings are enumerated.
Resumo:
Experimental adsorption data of difluoromethane (HFC-32) on activated carbon in powder (ACP) and fiber (ACF) forms over a range of (25 to 75) degrees C and pressures up to 1400 kPa are reported. The data are fitted to Toth and Dubinin-Astakhov isotherm equations. Adsorbed phase volume is derived from the data. Isosteric heats of adsorption are extracted, and their dependence on relative loading and relative pressure is analyzed.
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.