5 resultados para Hearing Impairments
em Indian Institute of Science - Bangalore - Índia
Resumo:
Background & objectives: There is a need to develop an affordable and reliable tool for hearing screening of neonates in resource constrained, medically underserved areas of developing nations. This study valuates a strategy of health worker based screening of neonates using a low cost mechanical calibrated noisemaker followed up with parental monitoring of age appropriate auditory milestones for detecting severe-profound hearing impairment in infants by 6 months of age. Methods: A trained health worker under the supervision of a qualified audiologist screened 425 neonates of whom 20 had confirmed severe-profound hearing impairment. Mechanical calibrated noisemakers of 50, 60, 70 and 80 dB (A) were used to elicit the behavioural responses. The parents of screened neonates were instructed to monitor the normal language and auditory milestones till 6 months of age. This strategy was validated against the reference standard consisting of a battery of tests - namely, auditory brain stem response (ABR), otoacoustic emissions (OAE) and behavioural assessment at 2 years of age. Bayesian prevalence weighted measures of screening were calculated. Results: The sensitivity and specificity was high with least false positive referrals for. 70 and 80 dB (A) noisemakers. All the noisemakers had 100 per cent negative predictive value. 70 and 80 dB (A) noisemakers had high positive likelihood ratios of 19 and 34, respectively. The probability differences for pre- and post- test positive was 43 and 58 for 70 and 80 dB (A) noisemakers, respectively. Interpretation & conclusions: In a controlled setting, health workers with primary education can be trained to use a mechanical calibrated noisemaker made of locally available material to reliably screen for severe-profound hearing loss in neonates. The monitoring of auditory responses could be done by informed parents. Multi-centre field trials of this strategy need to be carried out to examine the feasibility of community health care workers using it in resource constrained settings of developing nations to implement an effective national neonatal hearing screening programme.
Resumo:
Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.
Resumo:
A joint Maximum Likelihood (ML) estimation algorithm for the synchronization impairments such as Carrier Frequency Offset (CFO), Sampling Frequency Offset (SFO) and Symbol Timing Error (STE) in single user MIMO-OFDM system is investigated in this work. A received signal model that takes into account the nonlinear effects of CFO, SFO, STE and Channel Impulse Response (CIR) is formulated. Based on the signal model, a joint ML estimation algorithm is proposed. Cramer-Rao Lower Bound (CRLB) for the continuous parameters CFO and SFO is derived for the cases of with and without channel response effects and is used to compare the effect of coupling between different estimated parameters. The performance of the estimation method is studied through numerical simulations.
Resumo:
Mutations in the autosomal genes TMPRSS3, TMC1, USHIC, CDH23 and TMIE are known to cause hereditary hearing loss. To study the contribution of these genes to autosomal recessive, non-syndromic hearing loss (ARNSHL) in India, we examined 374 families with the disorder to identify potential mutations. We found four mutations in TMPRSS3, eight in TMC1, ten in USHIC, eight in CDH23 and three in TMIE. Of the 33 potentially pathogenic variants identified in these genes, 23 were new and the remaining have been previously reported. Collectively, mutations in these five genes contribute to about one-tenth of ARNSHL among the families examined. New mutations detected in this study extend the allelic heterogeneity of the genes and provide several additional variants for structure-function correlation studies. These findings have implications for early DNA-based detection of deafness and genetic counseling of affected families in the Indian subcontinent.
Resumo:
Low complexity joint estimation of synchronization impairments and channel in a single-user MIMO-OFDM system is presented in this paper. Based on a system model that takes into account the effects of synchronization impairments such as carrier frequency offset, sampling frequency offset, and symbol timing error, and channel, a Maximum Likelihood (ML) algorithm for the joint estimation is proposed. To reduce the complexity of ML grid search, the number of received signal samples used for estimation need to be reduced. The conventional channel estimation techniques using Least-Squares (LS) or Maximum a posteriori (MAP) methods fail for the reduced sample under-determined system, which results in poor performance of the joint estimator. The proposed ML algorithm uses Compressed Sensing (CS) based channel estimation method in a sparse fading scenario, where the received samples used for estimation are less than that required for an LS or MAP based estimation. The performance of the estimation method is studied through numerical simulations, and it is observed that CS based joint estimator performs better than LS and MAP based joint estimator. (C) 2013 Elsevier GmbH. All rights reserved.