4 resultados para Haemonchus spp

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomineralization of manganese on titanium condenser material exposed to seawater has been illustrated. Biomineralization occurs when the fouling components, namely, the microbes, are able to oxidize minerals present in water and deposit them as insoluble oxides on biofilm surfaces. Extensive biofilm characterization studies Showed that an alarmingly large number of bacteria in these biofilms are capable of oxidizing manganese and are, thereby, capable of causing biomineralization on the condenser material exposed to seawater. This paper addresses studies on understanding the exact role of the microbes in bringing about oxidation of manganese. The kinetics of manganese oxidation by marine Gram-positive manganese oxidizing bacterium Bacillus spp. that was isolated front the titanium surface was studied in detail. Manganese oxidation in the presence of Bacillus cells, by cell free extract (CFE) and heat-treated cell free extract was also studied. The study confirmed that bacteria mediate manganese oxidation and lead to the formation of biogenic oxides of MnO2 eventually leading to biomineralization on titanium surface exposed to seawater.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The csrA is a carbon storage regulator gene that encodes a protein with multiple RNA interaction sites. Bacterial non-coding small RNAs like csrB, csrC and their counterparts in diverse bacterial genus are identified to control the regulatory activities of CsrA and its orthologs. An attempt has been made in this study to identify 'novel' non-coding small RNAs that are involved in the regulatory activities of csrA gene. All CsrA-interacting small RNAs are computationally fingerprinted to have multiple occurrence of 7-nucleotide CsrA interacting repeats [CAGGA(U/A/C)G] along with a 18-nucleotide upstream binding site. However, in several of the genomes like Haemophilus spp, the upstream binding site is not identified. The current methodology overcomes this difficulty by identifying small RNA-specific orphan transcriptional units within the intergenic regions of the genome. The results could identify all known CsrA-interacting small RNAs in E. coli, Vibrio cholerae and Pseudomonas aeruginosa genomes and additionally has picked six new possible CsrA-interacting small RNA regions in E. coli. Our computational analysis indicates that known rygD and rprA sRNAs in E. coli could possibly interact with CsrA proteins. The study is extended to three of the Haemophilus genomes that could identify seven new possible CsrA interacting small RNAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two species of Pleurotus, Pleurotus florida and Pleurotus flabellatus were cultivated on two agro-residues (paddy straw; PS and coir pith; CP) singly as well as in combination with biogas digester residue (BDR, main feed leaf biomass). The biological efficiency, nutritional value, composition and nutrient balance (C, N and P) achieved with these substrates were studied. The most suitable substrate that produced higher yields and biological efficiency was PS mixed with BDR followed by coir pith with BDR. Addition of BDR with agro-residues could increase mushroom yield by 20-30%. The biological efficiency achieved was high for PS + BDR (231.93% for P. florida and 209.92% for P. flabellatus) and for CP + BDR (14831% for P. florida and 188.46% for P. flabellatus). The OC (organic carbon), TKN (nitrogen) and TP (phosphate) removal of the Pleurotus spp. under investigation suggests that PS with BDR is the best substrate for growing mushroom. (C) 2015 Published by Elsevier Inc. on behalf of International Energy Initiative.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.