23 resultados para HDPE and PVC geomembranes

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(o-toluidine) (POT) and poly(m-toluidine) (PMT) blends with polyvinylchloride (PVC) of five different compositions have been prepared by solution blending. The POT-PVC and PMT-PVC blends were prepared using THF as a solvent in which POT-HNO3, PMT-HNO3 bases and PVC are soluble. The blends have been characterized by spectral, thermal and electrical measurements. The results indicate the formation of blends at all the compositions presently studied. The thermal stability of the POT-PVC and PMT-PVC blends is higher than that of POT-HNO3 and PMT-HNO3 salts, respectively. Using the present method, POT/PMT can conveniently be blended with 30% wt/wt of PVC without significant loss in its conductivity. (C) 1998 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maleic anhydride (MAH) has been grafted onto high density polyethylene (HDPE) with benzoyl peroxide (BOP) initiator in toluene solution. Maximum degree of grafting (12%) without crosslinking has been obtained using MAH/HDPE and BOP/HDPE weight ratios of 1.0 and 0.15 respectively, at 110 degrees C. The HDPE-g-MAH compatibilizer is found to drastically reduce the dispersed phase size and also to produce homogeneous blends for relatively low concentrations of dispersed phase in HDPE/nylon blends. Addition of this compatibilizer results in increase of tensile strength and modulus with increasing nylon content of HDPE/nylon blends, while the opposite is found for the blends without any added compatibilizer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tapioca starch in both glycerol-plasticized and in unplasticized states was blended with high-density polyethylene (HDPE) using HDPE-g-maleic anhydride as the compatibilizer. The impact and tensile properties of the blends were measured according to ASTM methods. The results reveal that blends containing plasticized starch have better mechanical properties than those containing unplasticized starch. High values of elongation at break at par with those of virgin HDPE could be obtained for blends, even with high loading of plasticized starch. Morphological studies by SEM microscopy of impact-fractured specimens of such blends revealed a ductile fracture, unlike blends with unplasticized starch at such high loadings, which showed brittle fracture, even with the addition of compatibilizer. In general, blends of HDPE and plasticized starch with added compatibilizer show better mechanical properties than similar blends containing unplasticized starch. (C) 2001 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A green colored nano-pigment Y2BaCuO5 with impressive near infra-red (NIR) reflectance (61% at 1100 nm) was synthesized by a nano-emulsion method. The developed nano-crystalline powders were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV-vis-NIR diffuse reflectance spectroscopy and CIE-L*a*b* 1976 color scales. The XRD and Rietveld analyses of the designed pigment powders reveal the orthorhombic crystal structure for Y2BaCuO5, where yttrium is coordinated by seven oxygen atoms with the local symmetry of a distorted trigonal prism, barium is coordinated by eleven oxygen atoms, and the coordination polyhedron of copper is a distorted square pyramid CuO5]. The UV-vis spectrum of the nano-pigment exhibits an intense d-d transition associated with CuO5 chromophore between 2.1 and 2.5 eV in the visible domain. Therefore, a green color has been displayed by the developed nano-pigment. The potential utility of the nano-pigments as ``Cool Pigments'' was demonstrated by coating on to a building roofing material like cement slab and PVC coatings. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polypyrrole was synthesized by chemical oxidation of pyrrole in water containing various sulphonic acids like toluene sulphonic acid (TSA), sulphosalicylic acid (SSA), and camphor sulphonic acid (CSA), as well as a combination of each sulphonic acid with sodium dodecyl benzene sulphonate (NaDBS) to investigate the effect of doping on conductivity, yield, and processability of the conducting polymer. Free-standing blend films of polypyrrole and plasticized polyvinyl chloride (PVC) were obtained by casting an homogeneous suspension of the two polymers in tetrahydrofuran. The maximum conductivity of the blend film is similar to 0.3 S/cm, corresponding to a weight fraction of 0.16 w/w polypyrrole. The blend film is semiconducting in the range 300-10 K. A TG-DTA scan indicates the blend film to be amorphous with a stepwise decomposition process similar to pristine PVC. The choice of a dual dopant system during synthesis and the plasticised polymer during subsequent processing were keys to obtaining homogeneous high-quality films. (C) 2001 John Wiley & Sons, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present article demonstrates how the stiffness, hardness as well as the cellular response of bioinert high-density polyethylene (HDPE) can be significantly improved with combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different amounts of hydroxyapatite and alumina, limited to a total of 40 wt %, have been incorporated in HDPE matrix. An important step in composite fabrication was to select appropriate solvent and optimal addition of coupling agent (CA). In case of chemically coupled composites, 2% Titanium IV, 2-propanolato, tris iso-octadecanoato-O was used as a CA. All the hybrid composites, except monolithic HDPE, were fabricated under optimized compression molding condition (140 degrees C, 0.75 h, 10 MPa pressure). The compression molded composites were characterized, using X-ray diffraction, Fourier transformed infrared spectroscopy, and scanning electron microscopy. Importantly, in vitro cell culture and cell viability study (MTT) using L929 fibroblast and SaOS2 osteoblast-like cells confirmed good cytocompatibility properties of the developed hybrid composites. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the in vivo biocompatibility in terms of healing of long segmental bone defect in rabbit model as well as in vitro cytotoxicity of eluates of compression-molded High density polyethylene (HDPE)hydroxyapatite (HA)-aluminum oxide (Al2O3) composite-based implant material. Based on the physical property in terms of modulus and strength properties, as reported in our recent publication, HDPE-40 wt % HA and HDPE-20 wt % HA-20 wt % Al2O3 hybrid composites were used for biocompatibility assessment. Osteoblasts cells were cultured in conditioned media, which contains varying amount of composite eluate (0.01, 0.1, and 1.0 wt %). In vitro, the eluates did not exhibit any significant negative impact on proliferation, mineralization or on morphology of human osteoblast cells. In vivo, the histological assessment revealed neobone formation at the bone/implant interface, characterized by the presence of osteoid and osteoblasts. The observation of osteoclastic activity indicates the process of bone remodeling. No inflammation to any noticeable extent was observed at the implantation site. Overall, the combination of in vitro and in vivo results are suggestive of potential biomedical application of compression-molded HDPE- 20 wt % HA- 20 wt % Al2O3 composites to heal long segmental bone defects without causing any toxicity of bone cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents the results of the laboratory model tests and the numerical studies conducted on small diameter PVC pipes, buried in geocell reinforced sand beds. The aim of the study was to evaluate the suitability of the geocell reinforcement in protecting the underground utilities and buried pipelines. In addition to geocells, the efficacy of only geogrid and geocell with additional basal geogrid cases were also studied. A PVC (Poly Vinyl Chloride) pipe with external diameter 75 mm and thickness 1.4 mm was used in the experiments. The vehicle tire contact pressure was simulated by applying the pressure on the top of the bed with the help of a steel plate. Results suggest that the use of geocells with additional basal geogrid considerably reduces the deformation of the pipe as compared to other types of reinforcements. Further, the depth of placement of pipe was also varied between 1B to 2B (B is the width of loading plate) below the plate in the presence of geocell with additional basal geogrid. More than 50% reduction in the pressure and more than 40% reduction in the strain values were observed in the presence of reinforcements at different depths as compared to the unreinforced beds. Conversely, the performance of the subgrade soil was also found to be marginally influenced by the position of the pipe, even in the presence of the relatively stiff reinforcement system. Further, experimental results were validated with 3-dimensional numerical studies using FLAC(3D) (Fast Lagrangian Analysis of Continua in 3D). A good agreement in the measured pipe stain values were observed between the experimental and numerical studies. Numerical studies revealed that the geocells distribute the stresses in the lateral direction and thus reduce the pressure on the pipe. In addition, the results of the 1-g model tests were scaled up to the prototype case of the shallow buried pipeline below the pavement using the appropriate scaling laws. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mutual influence of the components on the crystallization behaviour of polyblends, namely, isotactic polybutene-1 (PB) with low-density and high-density polyethylene (LDPE and HDPE), has been studied using techniques such as differential scanning calorimetry, infra-red spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, etc. Each component in the blend is observed to crystallize independently. There is phase separation and incompatibility, as shown from tensile properties and scanning electron microscopic observation of the fracture surface of the blend. For HDPE-PE blends (<30% HDPE), unusual form I′ crystals of PB are observed along with the usual form II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new scheme is proposed for the detection of premature ventricular beats, which is a vital function in rhythm monitoring of cardiac patients. A transformation based on the first difference of the digitized electrocardiogram (ECG) signal is developed for the detection and delineation of QRS complexes. The method for classifying the abnormal complexes from the normal ones is based on the concepts of minimum phase and signal length. The parameters of a linear discriminant function obtained from a training feature vector set are used to classify the complexes. Results of application of the scheme to ECG of two arrhythmia patients are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new series of multielement flame-retardant plasticizers containing polyethylene stibinite phosphate esters have been prepared by bulk polymerization from ethylene glycol with various antimony (III) aryloxydichlorides and arylphosphorodichloridates possessing various combinations of substituent [Cl,Br,NO2]. All the polymers are pink-coloured viscous fluids. They were characterized by inherent viscosity, density, IR, H-1, C-13 and P-31 NMR spectroscopy. The thermal behaviour of the polymers was compared by thermogravimetric analysis and correlated with their structures. The flammability studies were carried out by the limiting oxygen index test. The polymers containing P, Sb, N and Pr elements in their backbone show superior thermal-and flame-retardant characteristics than the other polymers. A comparative study was carried out with one of the synthesized polymers as a polymeric flame-retardant additive to plasticized PVC. The results showed improved LOI and mechanical properties to that of the conventional flame-retardant additive composition. (C) 1997 Elsevier Science Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this article, we report the mechanical and biocompatibility properties of injection-molded high-density polyethylene (HDPE) composites reinforced with 40 wt % ceramic filler [hydroxyapatite (HA) and/or Al2O3] and 2 wt % titanate as a coupling agent. The mechanical property measurements revealed that a combination of a maximum tensile strength of 18.7 MPa and a maximum tensile modulus of about 855 MPa could be achieved with the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. For the same composite composition, the maximum compression strength was determined to be 71.6 MPa and the compression modulus was about 660 MPa. The fractrography study revealed the uniform distribution of ceramic fillers in the semicrystalline HDPE matrix. The cytocompatibility study with osteoblast-like SaOS2 cells confirmed extensive cell adhesion and proliferation on the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites. The cell viability analysis with the 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay revealed a statistically significant difference between the injection-molded HDPE20 wt % HA20 wt % Al2O3 composites and sintered HA for various culture durations of upto 7 days. The difference in cytocompatibility properties among the biocomposites is explained in terms of the difference in the protein absorption behavior. (C) 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012