6 resultados para Grow, Robert W., 1895-1985

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Influenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2. The resulting construct (HA6) was expressed in Escherichia coli and refolded from inclusion bodies. Biophysical studies and mutational analysis of the protein indicate that it is folded into the desired neutral pH conformation competent to bind the broadly neutralizing HA2 directed monoclonal 12D1, not the low pH conformation observed in previous studies. HA6 was highly immunogenic in mice and the mice were protected against lethal challenge by the homologous A/HK/68 mouse-adapted virus. An HA6-like construct from another H3 strain (A/Phil/2/82) also protected mice against A/HK/68 challenge. Regions included in HA6 are highly conserved within a subtype and are fairly well conserved within a clade. Targeting the highly conserved HA2 subunit with a bacterially produced immunogen is a vaccine strategy that may aid in pandemic preparedness.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical modeling of several turbulent nonreacting and reacting spray jets is carried out using a fully stochastic separated flow (FSSF) approach. As is widely used, the carrier-phase is considered in an Eulerian framework, while the dispersed phase is tracked in a Lagrangian framework following the stochastic separated flow (SSF) model. Various interactions between the two phases are taken into account by means of two-way coupling. Spray evaporation is described using a thermal model with an infinite conductivity in the liquid phase. The gas-phase turbulence terms are closed using the k-epsilon model. A novel mixture fraction based approach is used to stochastically model the fluctuating temperature and composition in the gas phase and these are then used to refine the estimates of the heat and mass transfer rates between the droplets and the surrounding gas-phase. In classical SSF (CSSF) methods, stochastic fluctuations of only the gas-phase velocity are modeled. Successful implementation of the FSSF approach to turbulent nonreacting and reacting spray jets is demonstrated. Results are compared against experimental measurements as well as with predictions using the CSSF approach for both nonreacting and reacting spray jets. The FSSF approach shows little difference from the CSSF predictions for nonreacting spray jets but differences are significant for reacting spray jets. In general, the FSSF approach gives good predictions of the flame length and structure but further improvements in modeling may be needed to improve the accuracy of some details of the Predictions. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses to global change. Within very large plots (median size 25ha), all stems 1cm diameter are identified to species, mapped, and regularly recensused according to standardized protocols. CTFS-ForestGEO spans 25 degrees S-61 degrees N latitude, is generally representative of the range of bioclimatic, edaphic, and topographic conditions experienced by forests worldwide, and is the only forest monitoring network that applies a standardized protocol to each of the world's major forest biomes. Supplementary standardized measurements at subsets of the sites provide additional information on plants, animals, and ecosystem and environmental variables. CTFS-ForestGEO sites are experiencing multifaceted anthropogenic global change pressures including warming (average 0.61 degrees C), changes in precipitation (up to +/- 30% change), atmospheric deposition of nitrogen and sulfur compounds (up to 3.8g Nm(-2)yr(-1) and 3.1g Sm(-2)yr(-1)), and forest fragmentation in the surrounding landscape (up to 88% reduced tree cover within 5km). The broad suite of measurements made at CTFS-ForestGEO sites makes it possible to investigate the complex ways in which global change is impacting forest dynamics. Ongoing research across the CTFS-ForestGEO network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in an era of global change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electron microscopy and diffraction studies of ordering in stoichiometric Ni-20%W and off-stoichiometric Ni-15%W alloys have been carried out. The specimens of Ni-20%W were first disordered at 1398 K for 4 h and then quenched rapidly into water. Short range order (SRO) spots were observed at {1 1/2 0}* positions. Two hitherto unknown metastable phases: D-2h(25)-Ni2W and DO22-Ni3W were observed in the diffraction patterns. Long range order (LRO) transformations were studied at 1103 and 1213 K. Kinetics and mechanism of transformations have been identified. Ni-15%W specimens were solution treated at 1523 K for 1 h followed by quenching in water. SRO spots similar to those found in Ni-20%W were observed in this alloy as well. The transition to LRO was studied at 1093 K. Distinct Ni4W precipitates could be observed after 5 h of annealing at this temperature. After 100 h of annealing precipitates were found to grow into faceted shape coherent with the disordered matrix. After prolonged annealing for over 150 h the Ni4W precipitates began to lose coherency by the generation of misfit dislocations. The microstructural observations have been compared for the stoichiometric and off-stoichiometric alloys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deleterious topological-closed-packed (tcp) phases grow in the interdiffusion zone in turbine blades mainly because of the addition of refractory elements such as Mo and W in the Ni- and Co-based superalloys. CoNi/Mo and CoNi/W diffusion couples are prepared to understand the growth mechanism of the phases in the interdiffusion zone. Instead of determining the main and cross-interdiffusion coefficients following the conventional method, we preferred to determine the average effective interdiffusion coefficients of two elements after fixing the composition of one element more or less the same in the interdiffusion zone. These parameters can be directly related to the growth kinetics of the phases and shed light on the atomic mechanism of diffusion. In both systems, the diffusion rate of elements and the phase layer thickness increased because of the addition of Ni in the solid solution phase, probably because of an increase in driving force. On the other hand, the growth rate of the mu phase and the diffusion coefficient of the species decreased because of the addition of Ni. This indicates the change in defect concentration, which assists diffusion. Further, we revisited the previously published Co-Ni-Mo and Co-Ni-W ternary phase diagrams and compared them with the composition range of the phases developed in the interdiffusion zone. Different composition ranges of the tcp phases are found, and corrected phase diagrams are shown. The outcome of this study will help to optimize the concentration of elements in superalloys to control the growth of the tcp phases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct equations for the growth kinetics of structural glass within mode-coupling theory, through a nonstationary variant of the three-density correlator defined by G. Biroli et al. Phys. Rev. Lett. 97, 195701 (2006)]. We solve a schematic form of the resulting equations to obtain the coarsening of the three-point correlator chi(3)(t, t(w)) as a function of waiting time tw. For a quench into the glass, we find that chi(3) attains a peak value similar to t(w)(0.5) at t - t(w) similar to t(w)(0.8), providing a theoretical basis for the numerical observations of Parisi J. Phys. Chem. B 103, 4128 (1999)] and Kob and Barrat Phys. Rev. Lett. 78, 4581 (1997)]. The aging is not ``simple'': the t(w) dependence cannot be attributed to an evolving effective temperature.