216 resultados para Ground reactions
em Indian Institute of Science - Bangalore - Índia
Resumo:
This paper reports ab intio, DFT and transition state theory (TST) calculations on HF, HCI and CIF elimination reactions from CH2Cl-CH2F molecule. Both the ground state and the transition state for HX elimination reactions have been optimized at HF, MP2 and DFT calculations with 6-31G*, 6-31G** and 6-311++G** basis sets. In addition, CCSD(T) single point calculations were carried out with MP2/6-311++G** optimized geometry for more accurate determination of the energies of the minima and transition state, compared to the other methods employed here. Classical barriers are converted to Arrhenius activation energy by TST calculations for comparisons with experimental results. The pre-exponential factors, A, calculated at all levels of theory are significantly larger than the experimental values. For activation energy, E-a DFT gives good results for HF elimination, within 4-8 W mol(-1) from experimental values. None of the methods employed, including CCSD(T), give comparable results for HCI elimination reactions. However, rate constants calculated by CCSD(T) method are in very good agreement with experiment for HCI elimination and they are in reasonable agreement for HF elimination reactions. Due to the strong correlation between A and E., the rate constants could be fit to a lower A and E-a (as given by experimental fitting, corresponding to a tight TS) or to larger A and E-a (as given by high level ab initio calculations, corresponding to a loose TS). The barrier for CIF elimination is determined to be 607 U mol(-1) at HF level and it is unlikely to be important for CH2FCH2Cl. Results for other CH2X-CH2Y (X,Y = F/Cl) are included for comparison.
Resumo:
A rare example of a two-dimensional Heisenberg model with an exact dimerized ground state is presented. This model, which can be regarded as a variation on the kagome' lattice, has several features of interest: it has a highly (but not macroscopically) degenerate ground state; it is closely related to spin chains studied by earlier authors; in particular, it exhibits domain-wall-like "kink" excitations normally associated only with one-dimensional systems. In some limits it decouples into noninteracting chains; unusually, this happens in the limit of strong, rather than weak, interchain coupling. [S0163-1829(99)50338-X].
Resumo:
Energetics of the ground and excited state intramolecular proton transfer in salicylic acid have been studied by ab initio molecular orbital calculations using the 6-31G** basis set at the restricted Hartree-Fock (RHF) and configuration interaction-single excitation (CIS) levels and also using the semiempirical method AM1 at the RHF level as well as with single and pair doubles excitation configuration interaction spanning eight frontier orbitals (PECI = 8). The ab initio potential energy profile for intramolecular proton transfer in the ground state reveals a single minimum corresponding to the primary form, in the first excited singlet state, however, there are two minima corresponding to the primary and tautomeric forms, separated by a barrier of similar to 6 kcal/mol, thus accounting for dual emission in salicylic acid. Electron density changes with electronic excitation and tautomerism indicate no zwitterion formation. Changes in spectral characteristics with change in pH, due to protonation and deprotonation of salicylic acid, are also accounted for, qualitatively. Although the AM1 calculations suggest a substantial barrier for proton transfer in the ground as well as the first excited state of SA, it predicts the transition wavelength in near quantitative accord with the experimental results for salicylic acid and its protonated and deprotonated forms.
Resumo:
The application of radical-mediated cyclizations and annulations in organic synthesis has grown in importance steadily over the years to reach the present status where they are now routinely used in the strategy-level planning.2 The presence of a quaternary carbon atom is frequently encountered in terpenoid natural products, and it often creates a synthetic challenge when two or more quaternary carbon atoms are present in a contiguous manner.3 Even though creation of a quaternary carbon atom by employing a tertiary radical is very facile, creation of a quaternary carbon atom (or a spiro carbon atom) via radical addition onto a fully substituted olefinic carbon atom is not that common but of synthetic importance. For example, the primary radical derived from the bromide 1 failed to cyclize to generate the two vicinal quaternary carbon atoms and resulted in only the reduced product 2.4 The tricyclic carbon framework tricyclo[6.2.1.01,5]undecane (3) is present in a number of sesquiterpenoids e.g. zizzanes, prelacinanes, etc.5
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Evidence of the initiation process during uncatalyzed thermal polymerization of vinyl monomers is presented. DSC studies reveal a prominent endothermic effect just before the polymerization exotherm, which is substantiated by the identification of the free radicals produced in the initiation by a quick quenching technique and subsequent detection by ESR at low temperatures.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
The methoxycyclophosphazenes [NP(OMe),], (n = 3-6) rearrange on heating to give oxocyclophosphazanes, [N(Me)PO(OMe)],. Isomeric products are formed when n = 4-6. The lH, ,lP, and 13C n.m.r. data for the starting materials and the products are presented. The ethoxy- and n-propoxy-derivatives N,P,( OR)* do not undergo the above rearrangement. The geminal derivatives N,P,R,(OMe), (R = Ph or NHBut) on heating yield both fully and partially rearranged products, namely dioxophosphaz-1 -enes and oxophosphazadienes, as shown by 270- MHz lH n.m.r. spectroscopy. The non-geminal derivative N,P,( NMe,),(OMe), gives only the fully rearranged product N,Me,P,(NMe,),O,(OMe), whose structure has been established from its lH and 31P n.m.r. spectra.
Resumo:
Preferential yield of ring expansion and rearrangement products through α-cleavage of tetramethyl-3-thio-1,3-cyclobutanedione (1) and 3-mercapto-2,2,4-trimethyl-3-pentenoic acid β-(thio lactone) (2) involving diradical and carbene has been observed upon photolysis of 1 and 2.
Resumo:
Arylalkylcyclopropenethiones undergo highly regioselective photochemical a-cleavage via thioketene carbene intermediates, giving rise to products derived from the less stabilized carbene. UHF MIND0/3 calculations provide an insight into this unexpected regioselectivity. The nx* triplet of cyclopropenethione is calculated to have a highly unsymmetrical geometry with an elongated C-C bond, a delocalized thiaaUyl fragment, and a pyramidal radicaloid carbon (which eventually becomes the carbene center). From this molecular electronic structure, aryl group stabilization is expected to be more effective at the thiaallyl group rather than at the pyramidal radical center. Thus, the stability of the substituted triplet thione rather than that of the thioketene carbene determines the preferred regiochemistry of cleavage. The unusual structure of the cyclopropenethione triplet is suggested to be related to one of the Jahn-Teller distorted forms of the cyclopropenyl radical. An alternative symmetrical structure is adopted by the corresponding triplet of cyclopropenone, partly accounting for its differing photobehavior. A similar structural dichotomy is demonstrated for the corresponding radical anions as well.
Resumo:
Hexafluorodisilane has been prepared by the fluorination of hexachlorodisilane or hexabromodisilane by potassium fluoride in boiling acetonitrile, in yields approximating 45 and 60% respectively. Hexafluorodisilane has been characterised by infrared spectral data, vapour density measurements and analytical data. Both hexafluorodisilane and hexachlorodisilane are found to react with sulfur trioxide when heated to 400°C for 12 h. The products of reaction are silicon tetrafluoride, silica and sulfur dioxide with hexafluorodisilane while hexachlorodisilane in addition gives rise to hexachlorodisiloxane.
Resumo:
Attempts have been made to understand the curing reactions in carboxy-terminated polybutadiene (CTPB), which happens to be the most practical binder in advanced solid composite propellants. The curing of CTPB has been studied for different ratios of curing agents (MAPO and Epoxide) by gel content, molecular weight, crosslink density, and penetration temperature measurements, and the optimum composition of curators for effective curing of CTPB has been determined. Activation energy calculations on the curing of CTPB with 9.5% epoxide and 0.5% MAPO in the temperature range 75100°C gave 14.1 kcal/mol for which a diffusion-controlled or acid-catalyzed epoxide ring opening mechanism has been suggested for the curing process in CTPB.