8 resultados para Goodness
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we study two multi-dimensional Goodness-of-Fit tests for spectrum sensing in cognitive radios. The multi-dimensional scenario refers to multiple CR nodes, each with multiple antennas, that record multiple observations from multiple primary users for spectrum sensing. These tests, viz., the Interpoint Distance (ID) based test and the h, f distance based tests are constructed based on the properties of stochastic distances. The ID test is studied in detail for a single CR node case, and a possible extension to handle multiple nodes is discussed. On the other hand, the h, f test is applicable in a multi-node setup. A robustness feature of the KL distance based test is discussed, which has connections with Middleton's class A model. Through Monte-Carlo simulations, the proposed tests are shown to outperform the existing techniques such as the eigenvalue ratio based test, John's test, and the sphericity test, in several scenarios.
Resumo:
In this paper we present a novel algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess goodness of hyperplanes at each node. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy, based on some recent variants of SVM, to assess the hyperplanes in such a way that the geometric structure in the data is taken into account. We show through empirical studies that our method is effective.
Resumo:
An attempt is made in this paper to arrive at a methodology for generating building technologies appropriate to rural housing. An evaluation of traditional modern' technologies currently in use reveals the need for alternatives. The lacunae in the presently available technologies also lead to a definition of rural housing needs. It is emphasised that contending technologies must establish a 'goodness of fit' between the house form and the pattern of needs. A systems viewpoint which looks at the dynamic process of building construction and the static structure of the building is then suggested as a means to match the technologies to the needs. The process viewpoint emphasises the role of building materials production and transportation in achieving desired building performances. A couple of examples of technological alternatives like the compacted soil block and the polythene-stabilised soil roof covering are then discussed. The static structural system viewpoint is then studied to arrive at methodologies of cost reduction. An illustrative analysis is carried out using the dynamic programming technique, to arrive at combinations of alternatives for the building components which lead to cost reduction. Some of the technological options are then evaluated against the need patterns. Finally, a guideline for developments in building technology is suggested
Resumo:
In this paper, we shed light on the cross-layer interactions between the PHY, link and routing layers in networks with MIMO links operating in the diversity mode. Many previous studies assume an overly simplistic PHY layer model that does not sufficiently capture these interactions. We show that the use of simplistic models can in fact lead to misleading conclusions with regards to the higher layer performance with MIMO diversity. Towards understanding the impact of various PHY layer features on MIMO diversity, we begin with a simple but widely-used model and progressively incorporate these features to create new models. We examine the goodness of these models by comparing the simulated performance results with each, with measurements on an indoor 802.11 n testbed. Our work reveals several interesting cross-layer dependencies that affect the gains due to MIMO diversity. In particular, we observe that relative to SISO links: (a) PHY layer gains due to MIMO diversity do not always carry over to the higher layers, (b) the use of other PHY layer features such as FEC codes significantly influence the gains due to MIMO diversity, and (c) the choice of the routing metric can impact the gains possible with MIMO.
Resumo:
In this paper, we present a new algorithm for learning oblique decision trees. Most of the current decision tree algorithms rely on impurity measures to assess the goodness of hyperplanes at each node while learning a decision tree in top-down fashion. These impurity measures do not properly capture the geometric structures in the data. Motivated by this, our algorithm uses a strategy for assessing the hyperplanes in such a way that the geometric structure in the data is taken into account. At each node of the decision tree, we find the clustering hyperplanes for both the classes and use their angle bisectors as the split rule at that node. We show through empirical studies that this idea leads to small decision trees and better performance. We also present some analysis to show that the angle bisectors of clustering hyperplanes that we use as the split rules at each node are solutions of an interesting optimization problem and hence argue that this is a principled method of learning a decision tree.
Resumo:
Lack of supervision in clustering algorithms often leads to clusters that are not useful or interesting to human reviewers. We investigate if supervision can be automatically transferred for clustering a target task, by providing a relevant supervised partitioning of a dataset from a different source task. The target clustering is made more meaningful for the human user by trading-off intrinsic clustering goodness on the target task for alignment with relevant supervised partitions in the source task, wherever possible. We propose a cross-guided clustering algorithm that builds on traditional k-means by aligning the target clusters with source partitions. The alignment process makes use of a cross-task similarity measure that discovers hidden relationships across tasks. When the source and target tasks correspond to different domains with potentially different vocabularies, we propose a projection approach using pivot vocabularies for the cross-domain similarity measure. Using multiple real-world and synthetic datasets, we show that our approach improves clustering accuracy significantly over traditional k-means and state-of-the-art semi-supervised clustering baselines, over a wide range of data characteristics and parameter settings.
Resumo:
We consider the basic bidirectional relaying problem, in which two users in a wireless network wish to exchange messages through an intermediate relay node. In the compute-and-forward strategy, the relay computes a function of the two messages using the naturally occurring sum of symbols simultaneously transmitted by user nodes in a Gaussian multiple-access channel (MAC), and the computed function value is forwarded to the user nodes in an ensuing broadcast phase. In this paper, we study the problem under an additional security constraint, which requires that each user's message be kept secure from the relay. We consider two types of security constraints: 1) perfect secrecy, in which the MAC channel output seen by the relay is independent of each user's message and 2) strong secrecy, which is a form of asymptotic independence. We propose a coding scheme based on nested lattices, the main feature of which is that given a pair of nested lattices that satisfy certain goodness properties, we can explicitly specify probability distributions for randomization at the encoders to achieve the desired security criteria. In particular, our coding scheme guarantees perfect or strong secrecy even in the absence of channel noise. The noise in the channel only affects reliability of computation at the relay, and for Gaussian noise, we derive achievable rates for reliable and secure computation. We also present an application of our methods to the multihop line network in which a source needs to transmit messages to a destination through a series of intermediate relays.
Resumo:
In this work, the hypothesis testing problem of spectrum sensing in a cognitive radio is formulated as a Goodness-of-fit test against the general class of noise distributions used in most communications-related applications. A simple, general, and powerful spectrum sensing technique based on the number of weighted zero-crossings in the observations is proposed. For the cases of uniform and exponential weights, an expression for computing the near-optimal detection threshold that meets a given false alarm probability constraint is obtained. The proposed detector is shown to be robust to two commonly encountered types of noise uncertainties, namely, the noise model uncertainty, where the PDF of the noise process is not completely known, and the noise parameter uncertainty, where the parameters associated with the noise PDF are either partially or completely unknown. Simulation results validate our analysis, and illustrate the performance benefits of the proposed technique relative to existing methods, especially in the low SNR regime and in the presence of noise uncertainties.