185 resultados para Glaucoma, Open-Angle
em Indian Institute of Science - Bangalore - Índia
Resumo:
Dimeric or gemini surfactants consist of two hydrophobic chains and two hydrophilic head groups co; valently connected by a hydrocarbon spacer. Small-angle neutron scattering measurements from bis-cationic C16H33N+(CH3)(2)-(CH2)(m)-N+(CH3)(2)C(16)H(33)2Br(-) dimeric surfactants, referred to-as 16-m-16, for different length of hydrocarbon spacers m-3-6, 8, 10, and 12, are reported. The measurements have been carried out at various concentrations: C=2.5 and 10 mM for all m and C=30 and 50 mM for m greater than or equal to 5. It is found that micellar structure depends on the length of the spacer. Micelles are disks for m=3, cylindrical for m=4, and prolate ellipsoidals for other values of m. These structural results are in agreement with the theoretical predictions based on the packing parameter. It has also been observed that conformation of the spacer and the hydrophobic chains in the interior of the micelle change as the length of the spacer is increased. The concentration dependence for m greater than or equal to 5 shows that the effect of surfactant concentration on the size of the micelle is more pronounced for m=5 and 12 than for the intermediate spacers. The fractional charge on the micelle increases with the increase in spacer length and decreases when the concentration is increased.
Resumo:
The work reported hen was motivated by a desire to verify the existence of structure - specifically MP-rich clusters induced by sodium bromide (NaBr) in the ternary liquid mixture 3-methylpyridine (Mf) + water(W) + NaBr. We present small-angle X-ray scattering (SAXS) measurements in this mixture. These measurements were obtained at room temperature (similar to 298 K) in the one-phase region (below the relevant lower consolute points, T(L)s) at different values of X (i.e., X = 0.02 - 0.17), where X is the weight fraction of NaBr in the mixture. Cluster-size distribution, estimated on the assumption that the clusters are spherical, shows systematic behaviour in that the peak of the distribution shifts rewards larger values of cluster radius as X increases. The largest spatial extent of the clusters (similar to 4.5 nm) is seen at X = 0.17. Data analysis assuming arbitrary shapes and sizes of clusters gives a limiting value of cluster size (- 4.5 nm) that is not very sensitive to X. It is suggested that the cluster size determined may not be the same as the usual critical-point fluctuations far removed from the critical point (T-L). The influence of the additional length scale due to clustering is discussed from the standpoint of crossover from Ising to mean-field critical behaviour, when moving away from the T-L.
Resumo:
Perforated element mufflers have been known to have good acousticp erformancew, henu sedo n automotive xhausst ystemsIn. thel astd ecadea nda half, plugm ufflersc, oncentrihc oler esonators, and three-ductc losed-endp erforatede lementsh ave been studied.T he presenti nvestigation concernso pen-endedt,h ree-ducpt erforatede lementsw, hich are knownt o combineh igh acoustic transmissiolno ss with low back pressuresT. he governinge quationsh ave been solved in the frequencyd omain,u singt he recouplinga pproacha longw ith appropriatbe oundaryc onditionst,o derivet he transferm atrixa ndt hent o calculaten oiser eductiona ndt ransmissiolno ss.T he predicted noiser eductionv aluesh aveb eens hownt o corroboratew ell with experimentallyo bservedv alues. Finally,p arametrics tudiesh aveb eend onet o draw designc urvesf or suchm ufflers.
Resumo:
This paper presents a methodology for dynamic analysis of short term small signal voltage instability in a multi-machine power system. The formulation of the problem is done by decoupling the angle instability from the voltage instability. The method is based on the incremental reactive current flow network (IRCFN), where the incremental reactive current injection at each bus is related to the incremental voltage magnitude at all the buses. Small signal stability using the eigenvalue analysis is illustrated utilizing a single-machine load bus (SMLB) and three-machine system examples. The role of a static var compensator (SVC) at the load bus is also examined.
Resumo:
Small angle x-ray scattering (SAXS) in a poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) solution has shown the important role of pi-electron conjugation in controlling the chain conformation and assembly. By increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in a fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. Xylene enhances the rigidity of the PPV backbone to yield extended structures, while tetrahydrofuran solvates the side groups to form compact coils in which the lp is much shorter.
Resumo:
Complexes of lanthanide perchlorates with the ligand N,N,N,N-tetra-methyl-3,6,9-trioxaundecane diamide (TUD) of the composition Ln(TUD)2-(ClO4)3 (Ln triple bond; length as m-dash La, Nd, Ho, Er, Y) were isolated. Electrical conductivity values indicate that all the perchlorate groups are ionic. IR and nuclear magnetic resonance (1H and 13C) data prove that the ligand coordinates to the metal via the three ether oxygens and the two carbonyl oxygens. A probable coordination number of ten can be assigned for all the complexes.
Resumo:
Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.
Resumo:
This paper develops a seven-level inverter structure for open-end winding induction motor drives. The inverter supply is realized by cascading four two-level and two three-level neutral-point-clamped inverters. The inverter control is designed in such a way that the common-mode voltage (CMV) is eliminated. DC-link capacitor voltage balancing is also achieved by using only the switching-state redundancies. The proposed power circuit structure is modular and therefore suitable for fault-tolerant applications. By appropriately isolating some of the inverters, the drive can be operated during fault conditions in a five-level or a three-level inverter mode, with preserved CMV elimination and DC-link capacitor voltage balancing, within a reduced modulation range.
Resumo:
This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.
Resumo:
Abstract is not available.
Resumo:
In this study, sliding experiments were conducted using pure magnesium pins against steel plates using an inclined pin-on-plate sliding tester. The inclination angle of the plate was varied in the tests and for each inclination angle, the pins were slid both perpendicular and parallel to the unidirectional grinding marks direction under both dry and lubricated conditions. SEM was used to study morphology of the transfer layer formed on the plates. Surface roughness of plates was measured using an optical profilometer. Results showed that the friction, amplitude of stick-slip motion and transfer layer formation significantly depend on both inclination angle and grinding marks direction of the plates. These variations could be attributed to the changes in the level of plowing friction taking place at the asperity level during sliding.
Resumo:
The 1122 (n=2) member of the Tl(Ca,Ba)n+1CunO2n+3 series containing a single Tl-O layer is shown to be associated with a Tc of 90 K. This value of Tc is significantly lower than that of the 2122 phase (Tcnot, vert, similar110 K) with two Tl-O layers.
Resumo:
The appearance of spinning side bands in the 2H NMR spectra of oriented molecules is investigated. A theoretical interpretation of the side-band intensities is carried out. Information derived on the director orientation and distribution as a function of spinning speedis reported.
Resumo:
Rapid solidification of Ti-7.3wt.%Cu (near-eutectoid composition), Ti-36.2wt.%Ni and Ti-34.3wt.% Ni-5.8wt.%Si alloys has been carried out by electron beam melting and splat quenching on a water-cooled rotating copper disc. The product obtained was in the form of thin ribbons 60–100 μm thick. Transmission electron microscopy studies of Ti---Cu alloy splats showed that the microstructure consisted of a mixture of martensite and a lamellar eutectoid product. The formation of the intermetallic compound Ti2Cu involved a diffusionless ω transformation and spinodal clustering. In the case of Ti---Ni alloy the as-quenched microstructure is complex, consisting of α, transformed β and intermetallic phases. This could have arisen possibly as a result of local variation in cooling rates. Rapid solidification of Ti---Ni---Si alloy resulted in partial quenching of an amorphous phase. The amorphous phase was seen to be extremely hard (a Vickers hardness of about 800 HV).