8 resultados para Gingival prosthesis
em Indian Institute of Science - Bangalore - Índia
Resumo:
Transglutaminase-2 (TGM-2) stabilizes extracellular matrix (ECM) proteins by cross-linking and has been implicated in several fibrotic disorders. Arecoline present in betel quid has been proposed as one of the causative factors for oral submucous fibrosis (OSMF). Hence, we hypothesize that arecoline may regulate TGM-2 and may have a role in the pathogenesis of OSMF. The expression of TGM-2 was studied in OSMF tissues by real-time RT-PCR analysis, and significant overexpression was observed in most OSMF tissues (P = 0.0112) compared with normal tissues. Arecoline induced TGM-2 mRNA and protein expression as well as TGM-2 activity in human gingival fibroblast cells. The addition of methocramine hemihydrate (M-2 muscarinic acetylcholine receptor selective antagonist) or 8'-bromo-cAMP abolished arecoline-mediated TGM-2 induction, suggesting a role for M-2 muscarinic acid receptor and a repressor role for cAMP. Our study provides evidence for TGM-2 overexpression in OSMF and its regulation by arecoline in oral fibroblasts.
Resumo:
Background and Objective: Oral submucous fibrosis, a disease of collagen disorder, has been attributed to arecoline present in the saliva of betel quid chewers. However, the molecular basis of the action of arecoline in the pathogenesis of oral submucous fibrosis is poorly understood. The basic aim of our study was to elucidate the mechanism underlying the action of arecoline on the expression of genes in oral fibroblasts. Material and Methods: Human keratinocytes (HaCaT cells) and primary human gingival fibroblasts were treated with arecoline in combination with various pathway inhibitors, and the expression of transforming growth factor-beta isoform genes and of collagen isoforms was assessed using reverse transcription polymerase chain reaction analysis. Results: We observed the induction of transforming growth factor-beta2 by arecoline in HaCaT cells and this induction was found to be caused by activation of the M-3 muscarinic acid receptor via the induction of calcium and the protein kinase C pathway. Most importantly, we showed that transforming growth factor-beta2 was significantly overexpressed in oral submucous fibrosis tissues (p = 0.008), with a median of 2.13 (n = 21) compared with 0.75 (n = 18) in normal buccal mucosal tissues. Furthermore, arecoline down-regulated the expression of collagens 1A1 and 3A1 in human primary gingival fibroblasts; however these collagens were induced by arecoline in the presence of spent medium of cultured human keratinocytes. Treatment with a transforming growth factor-beta blocker, transforming growth factor-beta1 latency-associated peptide, reversed this up-regulation of collagen, suggesting a role for profibrotic cytokines, such as transforming growth factor-beta, in the induction of collagens. Conclusion: Taken together, our data highlight the importance of arecoline-induced epithelial changes in the pathogenesis of oral submucous fibrosis.
Resumo:
This commentary highlights the effectiveness of optoelectronic properties of polymer semiconductors based on recent results emerging from our laboratory, where these materials are explored as artificial receptors for interfacing with the visual systems. Organic semiconductors based polymer layers in contact with physiological media exhibit interesting photophysical features, which mimic certain natural photoreceptors, including those in the retina. The availability of such optoelectronic materials opens up a gateway to utilize these structures as neuronal interfaces for stimulating retinal ganglion cells. In a recently reported work entitled ``A polymer optoelectronic interface provides visual cues to a blind retina,'' we utilized a specific configuration of a polymer semiconductor device structure to elicit neuronal activity in a blind retina upon photoexcitation. The elicited neuronal signals were found to have several features that followed the optoelectronic response of the polymer film. More importantly, the polymer-induced retinal response resembled the natural response of the retina to photoexcitation. These observations open up a promising material alternative for artificial retina applications.
Resumo:
Oral submucous fibrosis (OSF) is a chronic inflammatory disease characterized by the accumulation of excess collagen, and areca nut chewing has been proposed as an important etiological factor for disease manifestation. Activation of transforming growth factor-beta signaling has been postulated as the main causative event for increased collagen production in OSF. Oral epithelium plays important roles in OSF, and arecoline has been shown to induce TGF-beta in epithelial cells. In an attempt to understand the role of areca nut constituents in the manifestation of OSF, we studied the global gene expression profile in epithelial cells (HaCaT) following treatment with areca nut water extract or TGF-beta. Interestingly, 64% of the differentially regulated genes by areca nut water extract matches with the TGF-beta induced gene expression profile. Out of these, expression of 57% of genes was compromised in the presence of ALK5 (T beta RI) inhibitor and 7% were independently induced by areca nut, highlighting the importance of TGF-beta in areca nut actions. Areca nut water extract treatment induced p-SMAD2 and TGF-beta downstream targets in HaCaT cells but not in human gingival fibroblast cells (hGF), suggesting epithelial cells could be the source of TGF-beta in promoting OSF. Water extract of areca nut consists of polyphenols and alkaloids. Both polyphenol and alkaloid fractions of areca nut were able to induce TGF-beta signaling and its downstream targets. Also, SMAD-2 was phosphorylated following treatment of HaCaT cells by Catechin, Tannin and alkaloids namely Arecoline, Arecaidine and Guvacine. Moreover, both polyphenols and alkaloids induced TGF-beta 2 and THBS1 (activator of latent TGF-beta) in HaCaT cells suggesting areca nut mediated activation of p-SMAD2 involves up-regulation and activation of TGF-beta. These data suggest a major causative role for TGF-beta that is induced by areca nut in OSF progression.
Resumo:
Stimulus artifacts inhibit reliable acquisition of biological evoked potentials for several milliseconds if an electrode contact is utilized for both electrical stimulation and recording purposes. This hinders the measurement of evoked short-latency biological responses, which is otherwise elicited by stimulation in implantable prosthetic devices. We present an improved stimulus artifact suppression scheme using two electrode simultaneous stimulation and differential readout using high-gain amplifiers. Substantial reduction of artifact duration has been shown possible through the common-mode rejection property of an instrumentation amplifier for electrode interfaces. The performance of this method depends on good matching of electrode-electrolyte interface properties of the chosen electrode pair. A novel calibration algorithm has been developed that helps in artificial matching of impedance and thereby achieves the required performance in artifact suppression. Stimulus artifact duration has been reduced down to 50 mu s from the stimulation-cum-recording electrodes, which is similar to 6x improvement over the present state of the art. The system is characterized with emulated resistor-capacitor loads and a variety of in-vitro metal electrodes dipped in saline environment. The proposed method is going to be useful for closed-loop electrical stimulation and recording studies, such as bidirectional neural prosthesis of retina, cochlea, brain, and spinal cord.
Resumo:
Areca nut consumption has been implicated in the progression of Oral Submucous fibrosis (OSF); an inflammatory precancerous fibrotic condition. Our previous studies have demonstrated the activation of TGF-beta signaling in epithelial cells by areca nut components and also propose a role for epithelial expressed TGF-beta in the pathogenesis of OSF. Although the importance of epithelial cells in the manifestation of OSF has been proposed, the actual effectors are fibroblast cells. However, the role of areca nut and TGF-beta in the context of fibroblast response has not been elucidated. Therefore, to understand their role in the context of fibroblast response in OSF pathogenesis, human gingival fibroblasts (hGF) were treated with areca nut and/or TGF-beta followed by transcriptome profiling. The gene expression profile obtained was compared with the previously published transcriptome profiles of OSF tissues and areca nut treated epithelial cells. The analysis revealed regulation of 4666 and 1214 genes by areca nut and TGF-beta treatment respectively. The expression of 413 genes in hGF cells was potentiated by areca nut and TGF-beta together. Further, the differentially expressed genes of OSF tissues compared to normal tissues overlapped significantly with areca nut and TGF-beta induced genes in epithelial and hGF cells. Several positively enriched pathways were found to be common between OSF tissues and areca nut + TGF-beta treated hGF cells. In concordance, areca nut along with TGF-beta enhanced fibroblast activation as demonstrated by potentiation of alpha SMA, gamma SMA and collagen gel contraction by hGF cells. Furthermore, TGF-beta secreted by areca nut treated epithelial cells influenced fibroblast activation and other genes implicated in fibrosis. These data establish a role for areca nut influenced epithelial cells in OSF progression by activation of fibroblasts and emphasizes the importance of epithelial-mesenchymal interaction in OSF.
Resumo:
Exposure of oral cavity to areca nut is associated with several pathological conditions including oral submucous fibrosis (OSF). Histopathologically OSF is characterized by epithelial atrophy, chronic inflammation, juxtaepithelial hyalinization, leading to fibrosis of submucosal tissue and affects 0.5% of the population in the Indian subcontinent. As the molecular mechanisms leading to atrophied epithelium and fibrosis are poorly understood, we studied areca nut actions on human keratinocyte and gingival fibroblast cells. Areca nut water extract (ANW) was cytotoxic to epithelial cells and had a pro-proliferative effect on fibroblasts. This opposite effect of ANW on epithelial and fibroblast cells was intriguing but reflects the OSF histopathology such as epithelial atrophy and proliferation of fibroblasts. We demonstrate that the pro-proliferative effects of ANW on fibroblasts are dependent on insulin-like growth factor signalling while the cytotoxic effects on keratinocytes are dependent on the generation of reactive oxygen species. Treatment of keratinocytes with arecoline which is a component of ANW along with copper resulted in enhanced cytotoxicity which becomes comparable to IC50 of ANW. Furthermore, studies using cyclic voltammetry, mass spectrometry and plasmid cleavage assay suggested that the presence of arecoline increases oxidation reduction potential of copper leading to enhanced cleavage of DNA which could generate an apoptotic response. Terminal deoxynucleotidyl transferase dUTP Nick End Labeling assay and Ki-67 index of OSF tissue sections suggested epithelial apoptosis, which could be responsible for the atrophy of OSF epithelium.