28 resultados para Genital Diseases Female
em Indian Institute of Science - Bangalore - Índia
Resumo:
The administration of a potent antiestrogen, tamoxifen at a dose of 3 mg/kg body weight/day orally post-coitally to cycling mated bonnet monkeys(Macaca radiata) from days 18–30 of cycle resulted in inhibition of establishment of pregnancy in 9 out of 10 monkeys. Tamoxifen effect was not due to interference with luteal function. The effect was specific to tamoxifen as exogenously administered progesterone could not reverse it. In addition to suggesting a role for estrogen in maintenance of early pregnancy in the primate the present study could be a prelude to the development of an effective post-ovulatory approach for regulation of fertility in the human female
Resumo:
A few analogues of LHRH have been tested in the adult bonnet monkeys using change in serum testosterone following LHRH injection as a parameter of response to LHRH. Of the four analogues tested in male monkeys, Buserelin was found to be the most potent one in increasing serum testosterone levels. Injection of the LHRH antagonist at 1600 h resulted in the abolition of the characteristic nocturnal surge of testosterone observed in adult bonnet monkeys maintained under regulated light conditions. Following administration of LHRH a/s during early pregnancy, serum chorionic gonadotropin levels decreased though the course of pregnancy was not affected. These results suggest that bonnet monkey can be successfully employed to test LHRH analogues.
Resumo:
The antifertility activity of the plant Vicoa indica was tested in proven fertile bonnet monkeys. The dry powder of the whole plant was fed to the cycling monkeys on day 1 to 14 of menstrual cycle or day 9 to 14 of cycle or on day 2 to 5 after delivery and the fertility was evaluated in the following cycle in cycle fed monkey or after weaning the young one in the post-partum fed monkeys. Results indicated that while feeding in the post-partum monkeys did not confer any protection against pregnancy feeding during day 1 to 14 of cycle, protected from pregnancy. The monkeys did not become pregnant even after exposure to the proven fertile male monkeys for 13 ovulatory cycles while all the vehicle fed monkeys became pregnant within 3 cycles.
Prospects of riboflavin carrier protein (RCP) as an antifertility vaccine in male and female mammals
Resumo:
Riboflavin carrier protein (RCP) is obligatorily involved in yolk deposition of the vitamin, riboflavin, in the developing oocyte of the hen. The production of this protein is inducible by oestrogen. It is evolutionarily conserved in terms of its physicochemical, immunological and functional characteristics. It is the prime mediator of vitamin supply to the developing fetus in mammals, including primates. Passive immunoneutralization of the protein terminates pregnancy in rats. Active immunization of rats and bonnet monkeys with avian RCP prevents pregnancy without causing any adverse physiological effects of the mother in terms of her vitamin status, reproductive cycles or reproductive-endocrine profile. Denatured, linearized RCP is more effective in eliciting neutralizing antibodies capable of interfering with embryonic viability either before or during peri-implantation stages. Two defined stretches of sequential epitopes, one located at the N-terminus and the other at the C-terminus of the protein have been identified. Active immunization with either of these epitopes conjugated with diptheria toxoid curtails pregnancy in rats and monkeys. Immunohistochemical localization of RCP on ovulated oocytes and early embryos shows that the antibodies cause degeneration only of early embryos. RCP is produced intra-testicularly and becomes localized on acrosomal surface of mammalian spermatozoa. Active immunization of male rats and monkeys with denatured RCP markedly reduces fertility by impairing the fertilizing potential of spermatozoa. These findings suggest that RCP, or its defined fragments, could be a novel, first generation vaccine for regulating fertility in both the sexes.
Resumo:
An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
Males of several acoustically communicating orthopteran species form spatially and temporally structured choruses. We investigated whether male field crickets of the species Plebeiogryllus guttiventris formed choruses in the field. Males formed spatial aggregations and showed fidelity to a calling site within a night, forming stable choruses. Within aggregations, the acoustic ranges of males overlapped considerably. We tested whether males within hearing range of each other interacted acoustically. The chirps of simultaneously calling males were aphasic with respect to each other and showed no significant alternation or synchrony of calls. Some individuals changed temporal features of their calling songs such as chirp durations and chirp rates in response to a simultaneously calling neighbour. The implications of these results for female mate choice are discussed
Resumo:
Males and females may differ in morphology or behaviour because of contrasting factors affecting their reproductive success. In polygynous mammals with a marked sexual dimorphism, males are more likely to exhibit risky behaviour promoting reproductive success (Trivers 1985). In this study the authors present evidence that pubertal and adult male Asian elephants, Elephas maximus (above 15 years) incur greater risks than female-led family herds by foraging on cultivated crops which have more nutritive value than wild food plants.
Resumo:
We studied the effect on female viability of trans-heterozygous combinations of X-chromosome deficiencies and Sxt-(fl), a null allele of Sex-lethal. Twentyfive deficiencies, which together covered 80% of the X chromosome, were tested. Seven of these trans-heterozygous combinations caused significant levels of female lethality. Two of the seven interacting deficiencies include the previously known sex determination genes sans fille and sisterless-a. Four of the remaining uncover X-chromosomal regions that were not hitherto known to contain sex determination genes. These newly identified regions are defined by deficiencies Df(1)RA2 (7D10; 8A4-5), Df(1)KA14 (7F1-2; 8C6), Df(1)C52 (8E; 9C-D) and Df(1)N19 (17A1; 18A2). These four deficiencies were characterized further to determine whether it was the maternal or zygotic dosage that was primarily responsible for the observed lethality of female embryos, daughterless and extra macrochaetae, two known regulators of Sxl, influence the interaction of these deficiencies with Sxl.
Resumo:
A generic nonlinear mathematical model describing the human immunological dynamics is used to design an effective automatic drug administration scheme. Even though the model describes the effects of various drugs on the dynamic system, this work is confined to the drugs that kill the invading pathogen and heal the affected organ. From a system theoretic point of view, the drug inputs can be interpreted as control inputs, which can be designed based on control theoretic concepts. The controller is designed based on the principle of dynamic inversion and is found to be effective in curing the �nominal model patient� by killing the invading microbes and healing the damaged organ. A major advantage of this technique is that it leads to a closed-form state feedback form of control. It is also proved from a rigorous mathematical analysis that the internal dynamics of the system remains stable when the proposed controller is applied. A robustness study is also carried out for testing the effectiveness of the drug administration scheme for parameter uncertainties. It is observed from simulation studies that the technique has adequate robustness for many �realistic model patients� having off-nominal parameter values as well.
Resumo:
A clone showing female-specific expression was identified from an embryonic cDNA library of a mealybug, Planococcus lilacinus, In Southern blots this clone (P7) showed hybridization to genomic DNA of females, but not to that of males, However, P7 showed no hybridization to nuclei of either sex, raising the possibility that it was extrachromosomal in origin, In sectioned adult females P7 hybridized to an abdominal organ called the mycetome. The mycetome is formed by mycetocytes, which are polyploid cells originating from the polar bodies and cleavage nuclei that harbour maternally transmitted, intracellular symbionts. Electron microscopy confirmed the presence of symbionts within the mycetocytes, Sequence analysis showed that P7 is a 16S rRNA gene, confirming its prokaryotic origin, P7 transcripts are localized to one pole in young embryos but are found in the pole as well as in the germ band during later stages of development, P7 expression is detectable in young embryos of both sexes but the absence of P7 in third instar and adult males suggests that this gene, and hence the endosymbionts, are subject to sex-specific elimination. Copyright (C) 1997 Elsevier Science Ltd.
Resumo:
Ethnopharmacological relevance: Malaria is a serious public health problem in the north-eastern region of India including Assam, in view of development of chloroquine resistant Plasmodium falciparum. There is need for alternative and affordable therapy. Aim of the study: This study was conducted to document indigenous knowledge, usage customs and practices of medicinal plant species traditionally used by the residents of Sonitpur district of Tezpur, Assam to treat malaria and its associated symptoms. Materials and methods:A total of 50 randomly selected sampling represented by male (38.76%) and female respondents (12.24%) were interviewed using a semi-structured questionnaire. Results: The present ethno-botanical survey revealed 22 species of plants belonging to 17 botanical families were reported to be used exclusively in this region for the treatment of malaria. Verbenaceae (three species), Menispermaceae (two species), and Acanthaceae (two species) botanical families represented the species that are most commonly cited in this survey work and the detailed use of plants has been collected and described. Conclusions: The most serious threat to the existing knowledge and practice on traditional medicinal plants included cultural change, particularly the influence of modernization and lack of interests shown by the next younger generations were the main problems reported by the informants during the field survey. Hence, the proper documentation of traditional medicinal plants being used as anti-malarial agents and related indigenous knowledge held by the tribal community is an important approach to control the spread of vector-borne diseases like malaria reported in this survey work. (C) 2010 Elsevier Ireland Ltd. All rights reserved.