161 resultados para Generalization Problem

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relay selection for cooperative communications has attracted considerable research interest recently. While several criteria have been proposed for selecting one or more relays and analyzed, mechanisms that perform the selection in a distributed manner have received relatively less attention. In this paper, we analyze a splitting algorithm for selecting the single best relay amongst a known number of active nodes in a cooperative network. We develop new and exact asymptotic analysis for computing the average number of slots required to resolve the best relay. We then propose and analyze a new algorithm that addresses the general problem of selecting the best Q >= 1 relays. Regardless of the number of relays, the algorithm selects the best two relays within 4.406 slots and the best three within 6.491 slots, on average. Our analysis also brings out an intimate relationship between multiple access selection and multiple access control algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An exact solution is derived for a boundary-value problem for Laplace's equation which is a generalization of the one occurring in the course of solution of the problem of diffraction of surface water waves by a nearly vertical submerged barrier. The method of solution involves the use of complex function theory, the Schwarz reflection principle, and reduction to a system of two uncoupled Riemann-Hilbert problems. Known results, representing the reflection and transmission coefficients of the water wave problem involving a nearly vertical barrier, are derived in terms of the shape function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The understanding of thermoelastic behaviour of joints is significant in order to ensure the integrity of large and complex structures exposed to a thermal environment, particularly in fields such as aerospace and nuclear engineering. Thermomechanical generalization of partial contact behaviour of a pin joint under combined in-plane mechanical loading and on-axis unidirectional heat flow has already been established by the authors for the analytically simpler domains of large plates. This paper successfully extends the on-going investigation to a single pin in a finite rectangular isotropic plate as a two-dimensional abstraction from a practical situation of a multipin fastener joint. The finite element method is used to analyse the joint problem under on-axis thermomechanical loading and unified load-contact relationships are established for a class of loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After a brief discussion of the history of the problem, we propose a generalization of the map coloring problem to higher dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present a machine learning approach to measure the visual quality of JPEG-coded images. The features for predicting the perceived image quality are extracted by considering key human visual sensitivity (HVS) factors such as edge amplitude, edge length, background activity and background luminance. Image quality assessment involves estimating the functional relationship between HVS features and subjective test scores. The quality of the compressed images are obtained without referring to their original images ('No Reference' metric). Here, the problem of quality estimation is transformed to a classification problem and solved using extreme learning machine (ELM) algorithm. In ELM, the input weights and the bias values are randomly chosen and the output weights are analytically calculated. The generalization performance of the ELM algorithm for classification problems with imbalance in the number of samples per quality class depends critically on the input weights and the bias values. Hence, we propose two schemes, namely the k-fold selection scheme (KS-ELM) and the real-coded genetic algorithm (RCGA-ELM) to select the input weights and the bias values such that the generalization performance of the classifier is a maximum. Results indicate that the proposed schemes significantly improve the performance of ELM classifier under imbalance condition for image quality assessment. The experimental results prove that the estimated visual quality of the proposed RCGA-ELM emulates the mean opinion score very well. The experimental results are compared with the existing JPEG no-reference image quality metric and full-reference structural similarity image quality metric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new theory of shock dynamics has been developed in the form of a finite number of compatibility conditions along shock rays. It has been used to study the growth or decay of shock strength for accelerating or decelerating piston starting with a nonzero piston velocity. The results show good agreement with those obtained by Harten's high resolution TVD scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we first recast the generalized symmetric eigenvalue problem, where the underlying matrix pencil consists of symmetric positive definite matrices, into an unconstrained minimization problem by constructing an appropriate cost function, We then extend it to the case of multiple eigenvectors using an inflation technique, Based on this asymptotic formulation, we derive a quasi-Newton-based adaptive algorithm for estimating the required generalized eigenvectors in the data case. The resulting algorithm is modular and parallel, and it is globally convergent with probability one, We also analyze the effect of inexact inflation on the convergence of this algorithm and that of inexact knowledge of one of the matrices (in the pencil) on the resulting eigenstructure. Simulation results demonstrate that the performance of this algorithm is almost identical to that of the rank-one updating algorithm of Karasalo. Further, the performance of the proposed algorithm has been found to remain stable even over 1 million updates without suffering from any error accumulation problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compulsators are power sources of choice for use in electromagnetic launchers and railguns. These devices hold the promise of reducing unit costs of payload to orbit. In an earlier work, the author had calculated the current distribution in compulsator wires by considering the wire to be split into a finite number of separate wires. The present work develops an integral formulation of the problem of current distribution in compulsator wires which leads to an integrodifferential equation. Analytical solutions, including those for the integration constants, are obtained in closed form. The analytical solutions present a much clearer picture of the effect of various input parameters on the cross-sectional current distribution and point to ways in which the desired current density distribution can be achieved. Results are graphically presented and discussed, with particular reference to a 50-kJ compulsator in Bangalore. Finite-element analysis supports the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A genetic network can be represented as a directed graph in which a node corresponds to a gene and a directed edge specifies the direction of influence of one gene on another. The reconstruction of such networks from transcript profiling data remains an important yet challenging endeavor. A transcript profile specifies the abundances of many genes in a biological sample of interest. Prevailing strategies for learning the structure of a genetic network from high-dimensional transcript profiling data assume sparsity and linearity. Many methods consider relatively small directed graphs, inferring graphs with up to a few hundred nodes. This work examines large undirected graphs representations of genetic networks, graphs with many thousands of nodes where an undirected edge between two nodes does not indicate the direction of influence, and the problem of estimating the structure of such a sparse linear genetic network (SLGN) from transcript profiling data. Results: The structure learning task is cast as a sparse linear regression problem which is then posed as a LASSO (l1-constrained fitting) problem and solved finally by formulating a Linear Program (LP). A bound on the Generalization Error of this approach is given in terms of the Leave-One-Out Error. The accuracy and utility of LP-SLGNs is assessed quantitatively and qualitatively using simulated and real data. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) initiative provides gold standard data sets and evaluation metrics that enable and facilitate the comparison of algorithms for deducing the structure of networks. The structures of LP-SLGNs estimated from the INSILICO1, INSILICO2 and INSILICO3 simulated DREAM2 data sets are comparable to those proposed by the first and/or second ranked teams in the DREAM2 competition. The structures of LP-SLGNs estimated from two published Saccharomyces cerevisae cell cycle transcript profiling data sets capture known regulatory associations. In each S. cerevisiae LP-SLGN, the number of nodes with a particular degree follows an approximate power law suggesting that its degree distributions is similar to that observed in real-world networks. Inspection of these LP-SLGNs suggests biological hypotheses amenable to experimental verification. Conclusion: A statistically robust and computationally efficient LP-based method for estimating the topology of a large sparse undirected graph from high-dimensional data yields representations of genetic networks that are biologically plausible and useful abstractions of the structures of real genetic networks. Analysis of the statistical and topological properties of learned LP-SLGNs may have practical value; for example, genes with high random walk betweenness, a measure of the centrality of a node in a graph, are good candidates for intervention studies and hence integrated computational – experimental investigations designed to infer more realistic and sophisticated probabilistic directed graphical model representations of genetic networks. The LP-based solutions of the sparse linear regression problem described here may provide a method for learning the structure of transcription factor networks from transcript profiling and transcription factor binding motif data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computation of the dependency basis is the fundamental step in solving the implication problem for MVDs in relational database theory. We examine this problem from an algebraic perspective. We introduce the notion of the inference basis of a set M of MVDs and show that it contains the maximum information about the logical consequences of M. We propose the notion of an MVD-lattice and develop an algebraic characterization of the inference basis using simple notions from lattice theory. We also establish several properties of MVD-lattices related to the implication problem. Founded on our characterization, we synthesize efficient algorithms for (a) computing the inference basis of a given set M of MVDs; (b) computing the dependency basis of a given attribute set w.r.t. M; and (c) solving the implication problem for MVDs. Finally, we show that our results naturally extend to incorporate FDs also in a way that enables the solution of the implication problem for both FDs and MVDs put together.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formulation of quantum first passage problem is attempted in terms of a restricted Feynman path integral that simulates an absorbing barrier as in the corresponding classical case. The positivity of the resulting probability density, however, remains to be demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A direct and simple approach, utilizing Watson's lemma, is presented for obtaining an approximate solution of a three-part Wiener-Hopf problem associated with the problem of diffraction of a plane wave by a soft strip.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider the bi-criteria single machine scheduling problem of n jobs with a learning effect. The two objectives considered are the total completion time (TC) and total absolute differences in completion times (TADC). The objective is to find a sequence that performs well with respect to both the objectives: the total completion time and the total absolute differences in completion times. In an earlier study, a method of solving bi-criteria transportation problem is presented. In this paper, we use the methodology of solvin bi-criteria transportation problem, to our bi-criteria single machine scheduling problem with a learning effect, and obtain the set of optimal sequences,. Numerical examples are presented for illustrating the applicability and ease of understanding.