311 resultados para General Adversary Structures
em Indian Institute of Science - Bangalore - Índia
Resumo:
The situation normally encountered in the high-resolution refinement of protein structures is one in which the inaccurate positions of P out of a total of N atoms are known whereas those of the remaining atoms are unknown. Fourier maps with coefficients (FN -- F'P) × exp (i[alpha]'P) and (mFN -- nF'P) exp (i[alpha]'P), where FN is the observed structure factor and F'P and [alpha]'P are the magnitude and the phase angle of the calculated structure factor corresponding to the inaccurate atomic positions, are often used to correct the positions of the P atoms and to determine those of the Q unknown atoms. A general theoretical approach is presented to elucidate the effect of errors in the positions of the known atoms on the corrected positions of the known atoms and the positions of the unknown atoms derived from such maps. The theory also leads to the optimal choice of parameters used in the different syntheses. When the errors in the positions of the input atoms are systematic, their effects are not taken care of automatically by the syntheses.
Resumo:
We describe an investigation of (Ba3MMWO9)-M-II-W-IV oxides for M-II = Ca, Zn, and other divalent metals and M-IV = Ti, Zr. In general, a 1:2-ordered 6H (hexagonal, P6(3)/mmc) perovskite structure is stabilized at high temperatures (1300 degrees C) for all of the (Ba3MTiWO9)-Ti-II oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba-2(Zn2/3Ti1/3)(W2/3Ti1/3)O-6, is obtained at 1200 degrees C for Ba3ZnTiWO9. Sr substitution for Ba in the latter stabilizes the cubic 3C structure instead of the 6H structure. A metastable Ba3CaZrWO9 that adopts the 3C (cubic, Fm (3) over barm) structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the present investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d(0)-induced distortion of metal-oxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the (Ba3MMWO9)-M-II-W-IV series.
Resumo:
Two new alkali metal borophosphates, K-3[BP(3)o(9)(OH)(3)] and Rb-3[B2P3O11(OH)(2)], were synthesized by applying solvothermal techniques using ethanol as solvent. The crystal structures were solved by means of single-crystal X-ray diffraction (K-3[BP3O9(OH)(3)], monoclinic, C2/c (No. 15), a = 2454.6(8) pm, b = 736.3(2) pm, c = 1406.2(4) pm, beta = 118.35(2)degrees, Z = 8; Rb-3[B2P3O11(OH)(2)], monoclinic, P2(1)/c (No. 14), a = 781.6(2) pm, b:= 667.3(2) pm, c = 2424.8(5) pm, beta = 92.88(1)degrees, Z = 4). Both crystal structures comprise borophosphate chain anions. While for the rubidium compound a loop-branched chain motif is found as common for most of the chain anions in alkali metal borophosphates, the crystal structure of the potassium phase comprises the first open-branched chain with the highest phosphate content found so far in this group of compounds. Both chain anions are Closely related to known anhydrous or hydrated phases, and the structural relations are discussed in terms of how the presence of OH groups and hydrogen bonds as well as number, charge, and size of charge balancing cations influence the 3D structural arrangement. The anionic entities are classified in terms of general principles of structural systematics for borophosphates.
Resumo:
We describe an investigation of (Ba3MMWO9)-M-II-W-IV oxides for M-II = Ca, Zn, and other divalent metals and M-IV = Ti, Zr. In general, a 1:2-ordered 6H (hexagonal, P6(3)/mmc) perovskite structure is stabilized at high temperatures (1300 degrees C) for all of the (Ba3MTiWO9)-Ti-II oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba-2(Zn2/3Ti1/3)(W2/3Ti1/3)O-6, is obtained at 1200 degrees C for Ba3ZnTiWO9. Sr substitution for Ba in the latter stabilizes the cubic 3C structure instead of the 6H structure. A metastable Ba3CaZrWO9 that adopts the 3C (cubic, Fm (3) over barm) structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the present investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d(0)-induced distortion of metal-oxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the (Ba3MMWO9)-M-II-W-IV series.
Resumo:
A general method for generation of base-pairs in a curved DNA structure, for any prescribed values of helical parameters--unit rise (h), unit twist (theta), wedge roll (theta R) and wedge tilt (theta T), propeller twist (theta p) and displacement (D) is described. Its application for generation of uniform as well curved structures is also illustrated with some representative examples. An interesting relationship is observed between helical twist (theta), base-pair parameters theta x, theta y and the wedge parameters theta R, theta T, which has important consequences for the description and estimation of DNA curvature.
Resumo:
Research on structure and magnetic properties of polynuclear metal complexes to understand the structural and chemical factors governing the electronic exchange coupling mediated by multi-atom bridging ligands is of growing interest. Hydrothermal treatment of Ni(NO3)(2)center dot 6H(2)O with N-(4-carboxyphenyl)iminodiacetic acid N-4(H(3)CPIDA)] at 150 degrees C yielded a 3D coordination polymer of general formula Ni-3{N-4( CPIDA)}(2)(H2O)(3)]center dot 6H(2)O (1). An analogous network of general formula Co-3{N-3(CPIDA)}(2)(H2O)(3)]center dot 3H(2)O (2) was synthesized using N-(3-carboxyphenyl) iminodiacetic acid N-3(H(3)CPIDA)] in combination with Co(NO3)(2)center dot 6H(2)O under identical reaction condition. Both the complexes contain trinuclear secondary building unit, and crystallized in monoclinic system with space groups C2/c (1) and P2(1)/c (2), respectively. Variable temperature magnetic characterization of these complexes in the temperature range of 2-300 K indicated the presence of overall ferromagnetic and antiferromagnetic behavior for 1 and 2, respectively. Density functional theory calculations (B3LYP functional) were performed for further insight on the trinuclear units to provide a qualitative theoretical interpretation on the overall magnetic behavior of the complexes 1 and 2. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present a general method for the synthesis of functional nanoporous structures by heat treating a loose compact of nanorods. Partial sintering of such a compact leads to spherodization of the nanorods and their fusion at the contact regions leading to an interconnected porous microstructure. The pore diameter can be controlled by changing the original nanorod diameter. We illustrate the generality of the method using TiO2, ZnO and hydroxyapatite as model systems; the method is applicable for any material that can be grown in the form of nanorods. The kinetics of the sintering process can be significantly enhanced in systems in which additional driving forces for mass transport arise from phase transitions proving an ultrafast pathway for producing biphasic porous structures. The possibility of producing hierarchical porous structures using fugitive sintering aids makes this process ideal for a variety of applications including catalysis, photoanodes for solar cells and scaffolds for biomedical applications.
Resumo:
Tensile tests in the temperature range 298 to 873 K have been performed on 2.25Cr-1Mo base metal and simulated heat affected zone (HAZ) structures of its weld joint, namely coarse grain bainite, fine grain bainite and intercritical structure. Tensile flow behaviour of all the microstructural conditions could be adequately described by the Hollomon equation (sigma = K-1 epsilon(n1)) at higher (> 623 K) temperatures. Deviation from the Hollomon equation was observed at low strains and lower (< 623 K) temperatures. The Ludwigson modification of Hollomon's equation, sigma = K-1 epsilon(n1) + exp (K-2 + n(2) epsilon), was found to describe the flow curve. In general, the flow parameters n(1), K-1, n(2) and K-2 were found to decrease with increase in temperature except in the intermediate temperature range (423 to 623 K). Peaks/plateaus were observed in their variation with temperature in the intermediate temperature range coinciding with the occurrence of serrated flow in the load-elongation curve. The n(1) Value increased and the K-1 value decreased with the type of microstructure in the order: coarse grain bainite, fine grain bainite, base metal and intercritical structure. The variation of nl with microstructure has been rationalized on the basis of mean free path (MFP) of dislocations which is directly related to the inter-particle spacing. Larger MFP of dislocations lead to higher strain hardening exponents n(1).
Resumo:
In this work, we explore simultaneous design and material selection by posing it as an optimization problem. The underlying principles for our approach are Ashby's material selection procedure and structural optimization. For the simplicity and ease of initial implementation of the general procedure, truss structures under static load are considered in this work in view of maximum stiffness, minimum weight/cost and safety against failure. Along the lines of Ashby's material indices, a new design index is derived for trusses. This helps in choosing the most suitable material for any design of a truss. Using this, both the design space and material database are searched simultaneously using optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous even though the material selection is an inherently discrete problem.
Resumo:
The X-ray structures of new crystal forms of peptidyl-tRNA hydrolase from M.similar to tuberculosis reported here and the results of previous X-ray studies of the enzyme from different sources provide a picture of the functionally relevant plasticity of the protein molecule. The new X-ray results confirm the connection deduced previously between the closure of the lid at the peptide-binding site and the opening of the gate that separates the peptide-binding and tRNA-binding sites. The plasticity of the molecule indicated by X-ray structures is in general agreement with that deduced from the available solution NMR results. The correlation between the lid and the gate movements is not, however, observed in the NMR structure.
Resumo:
The paper discusses basically a wave propagation based method for identifying the damage due to skin-stiffener debonding in a stiffened structure. First, a spectral finite element model (SFEM) is developed for modeling wave propagation in general built-up structures, using the concept of assembling 2D spectral plate elements and the model is then used in modeling wave propagation in a skin-stiffener type structure. The damage force indicator (DFI) technique, which is derived from the dynamic stiffness matrix of the healthy stiffened structure (obtained from the SFEM model) along with the nodal displacements of the debonded stiffened structure (obtained from 2D finite element model), is used to identify the damage due to the presence of debond in a stiffened structure.
Resumo:
Many problems of state estimation in structural dynamics permit a partitioning of system states into nonlinear and conditionally linear substructures. This enables a part of the problem to be solved exactly, using the Kalman filter, and the remainder using Monte Carlo simulations. The present study develops an algorithm that combines sequential importance sampling based particle filtering with Kalman filtering to a fairly general form of process equations and demonstrates the application of a substructuring scheme to problems of hidden state estimation in structures with local nonlinearities, response sensitivity model updating in nonlinear systems, and characterization of residual displacements in instrumented inelastic structures. The paper also theoretically demonstrates that the sampling variance associated with the substructuring scheme used does not exceed the sampling variance corresponding to the Monte Carlo filtering without substructuring. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The study extends the first order reliability method (FORM) and inverse FORM to update reliability models for existing, statically loaded structures based on measured responses. Solutions based on Bayes' theorem, Markov chain Monte Carlo simulations, and inverse reliability analysis are developed. The case of linear systems with Gaussian uncertainties and linear performance functions is shown to be exactly solvable. FORM and inverse reliability based methods are subsequently developed to deal with more general problems. The proposed procedures are implemented by combining Matlab based reliability modules with finite element models residing on the Abaqus software. Numerical illustrations on linear and nonlinear frames are presented. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Protein structure space is believed to consist of a finite set of discrete folds, unlike the protein sequence space which is astronomically large, indicating that proteins from the available sequence space are likely to adopt one of the many folds already observed. In spite of extensive sequence-structure correlation data, protein structure prediction still remains an open question with researchers having tried different approaches (experimental as well as computational). One of the challenges of protein structure prediction is to identify the native protein structures from a milieu of decoys/models. In this work, a rigorous investigation of Protein Structure Networks (PSNs) has been performed to detect native structures from decoys/ models. Ninety four parameters obtained from network studies have been optimally combined with Support Vector Machines (SVM) to derive a general metric to distinguish decoys/models from the native protein structures with an accuracy of 94.11%. Recently, for the first time in the literature we had shown that PSN has the capability to distinguish native proteins from decoys. A major difference between the present work and the previous study is to explore the transition profiles at different strengths of non-covalent interactions and SVM has indeed identified this as an important parameter. Additionally, the SVM trained algorithm is also applied to the recent CASP10 predicted models. The novelty of the network approach is that it is based on general network properties of native protein structures and that a given model can be assessed independent of any reference structure. Thus, the approach presented in this paper can be valuable in validating the predicted structures. A web-server has been developed for this purpose and is freely available at http://vishgraph.mbu.iisc.ernet.in/GraProStr/PSN-QA.html.
Resumo:
Four-dimensional fluorescence microscopy-which records 3D image information as a function of time-provides an unbiased way of tracking dynamic behavior of subcellular components in living samples and capturing key events in complex macromolecular processes. Unfortunately, the combination of phototoxicity and photobleaching can severely limit the density or duration of sampling, thereby limiting the biological information that can be obtained. Although widefield microscopy provides a very light-efficient way of imaging, obtaining high-quality reconstructions requires deconvolution to remove optical aberrations. Unfortunately, most deconvolution methods perform very poorly at low signal-to-noise ratios, thereby requiring moderate photon doses to obtain acceptable resolution. We present a unique deconvolution method that combines an entropy-based regularization function with kernels that can exploit general spatial characteristics of the fluorescence image to push the required dose to extreme low levels, resulting in an enabling technology for high-resolution in vivo biological imaging.