6 resultados para Gaze

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ramakrishnan A, Chokhandre S, Murthy A. Voluntary control of multisaccade gaze shifts during movement preparation and execution. J Neurophysiol 103: 2400-2416, 2010. First published February 17, 2010; doi: 10.1152/jn.00843.2009. Although the nature of gaze control regulating single saccades is relatively well documented, how such control is implemented to regulate multisaccade gaze shifts is not known. We used highly eccentric targets to elicit multisaccade gaze shifts and tested the ability of subjects to control the saccade sequence by presenting a second target on random trials. Their response allowed us to test the nature of control at many levels: before, during, and between saccades. Although the saccade sequence could be inhibited before it began, we observed clear signs of truncation of the first saccade, which confirmed that it could be inhibited in midflight as well. Using a race model that explains the control of single saccades, we estimated that it took about 100 ms to inhibit a planned saccade but took about 150 ms to inhibit a saccade during its execution. Although the time taken to inhibit was different, the high subject-wise correlation suggests a unitary inhibitory control acting at different levels in the oculomotor system. We also frequently observed responses that consisted of hypometric initial saccades, followed by secondary saccades to the initial target. Given the estimates of the inhibitory process provided by the model that also took into account the variances of the processes as well, the secondary saccades (average latency similar to 215 ms) should have been inhibited. Failure to inhibit the secondary saccade suggests that the intersaccadic interval in a multisaccade response is a ballistic stage. Collectively, these data indicate that the oculomotor system can control a response until a very late stage in its execution. However, if the response consists of multiple movements then the preparation of the second movement becomes refractory to new visual input, either because it is part of a preprogrammed sequence or as a consequence of being a corrective response to a motor error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digital human modeling (DHM) involves modeling of structure, form and functional capabilities of human users for ergonomics simulation. This paper presents application of geometric procedures for investigating the characteristics of human visual capabilities which are particularly important in the context mentioned above. Using the cone of unrestricted directions through the pupil on a tessellated head model as the geometric interpretation of the clinical field-of-view (FoV), the results obtained are experimentally validated. Estimating the pupil movement for a given gaze direction using Listing's Law, FoVs are re-computed. Significant variation of the FoV is observed with the variation in gaze direction. A novel cube-grid representation, which integrated the unit-cube representation of directions and the enhanced slice representation has been introduced for fast and exact point classification for point visibility analysis for a given FoV. Computation of containment frequency of every grid-cell for a given set of FoVs enabled determination of percentile-based FoV contours for estimating the visual performance of a given population. This is a new concept which makes visibility analysis more meaningful from ergonomics point-of-view. The algorithms are fast enough to support interactive analysis of reasonably complex scenes on a typical desktop computer. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many common activities, like reading, scanning scenes, or searching for an inconspicuous item in a cluttered environment, entail serial movements of the eyes that shift the gaze from one object to another. Previous studies have shown that the primate brain is capable of programming sequential saccadic eye movements in parallel. Given that the onset of saccades directed to a target are unpredictable in individual trials, what prevents a saccade during parallel programming from being executed in the direction of the second target before execution of another saccade in the direction of the first target remains unclear. Using a computational model, here we demonstrate that sequential saccades inhibit each other and share the brain's limited processing resources (capacity) so that the planning of a saccade in the direction of the first target always finishes first. In this framework, the latency of a saccade increases linearly with the fraction of capacity allocated to the other saccade in the sequence, and exponentially with the duration of capacity sharing. Our study establishes a link between the dual-task paradigm and the ramp-to-threshold model of response time to identify a physiologically viable mechanism that preserves the serial order of saccades without compromising the speed of performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bhutani N, Ray S, Murthy A. Is saccade averaging determined by visual processing or movement planning? J Neurophysiol 108: 3161-3171, 2012. First published September 26, 2012; doi:10.1152/jn.00344.2012.-Saccadic averaging that causes subjects' gaze to land between the location of two targets when faced with simultaneously or sequentially presented stimuli has been often used as a probe to investigate the nature of computations that transform sensory representations into an oculomotor plan. Since saccadic movements involve at least two processing stages-a visual stage that selects a target and a movement stage that prepares the response-saccade averaging can either occur due to interference in visual processing or movement planning. By having human subjects perform two versions of a saccadic double-step task, in which the stimuli remained the same, but different instructions were provided (REDIRECT gaze to the later-appearing target vs. FOLLOW the sequence of targets in their order of appearance), we tested two alternative hypotheses. If saccade averaging were due to visual processing alone, the pattern of saccade averaging is expected to remain the same across task conditions. However, whereas subjects produced averaged saccades between two targets in the FOLLOW condition, they produced hypometric saccades in the direction of the initial target in the REDIRECT condition, suggesting that the interaction between competing movement plans produces saccade averaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Regions in video streams attracting human interest contribute significantly to human understanding of the video. Being able to predict salient and informative Regions of Interest (ROIs) through a sequence of eye movements is a challenging problem. Applications such as content-aware retargeting of videos to different aspect ratios while preserving informative regions and smart insertion of dialog (closed-caption text) into the video stream can significantly be improved using the predicted ROIs. We propose an interactive human-in-the-loop framework to model eye movements and predict visual saliency into yet-unseen frames. Eye tracking and video content are used to model visual attention in a manner that accounts for important eye-gaze characteristics such as temporal discontinuities due to sudden eye movements, noise, and behavioral artifacts. A novel statistical-and algorithm-based method gaze buffering is proposed for eye-gaze analysis and its fusion with content-based features. Our robust saliency prediction is instantiated for two challenging and exciting applications. The first application alters video aspect ratios on-the-fly using content-aware video retargeting, thus making them suitable for a variety of display sizes. The second application dynamically localizes active speakers and places dialog captions on-the-fly in the video stream. Our method ensures that dialogs are faithful to active speaker locations and do not interfere with salient content in the video stream. Our framework naturally accommodates personalisation of the application to suit biases and preferences of individual users.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many studies of reaching and pointing have shown significant spatial and temporal correlations between eye and hand movements. Nevertheless, it remains unclear whether these correlations are incidental, arising from common inputs (independent model); whether these correlations represent an interaction between otherwise independent eye and hand systems (interactive model); or whether these correlations arise from a single dedicated eye-hand system (common command model). Subjects were instructed to redirect gaze and pointing movements in a double-step task in an attempt to decouple eye-hand movements and causally distinguish between the three architectures. We used a drift-diffusion framework in the context of a race model, which has been previously used to explain redirect behavior for eye and hand movements separately, to predict the pattern of eye-hand decoupling. We found that the common command architecture could best explain the observed frequency of different eye and hand response patterns to the target step. A common stochastic accumulator for eye-hand coordination also predicts comparable variances, despite significant difference in the means of the eye and hand reaction time (RT) distributions, which we tested. Consistent with this prediction, we observed that the variances of the eye and hand RTs were similar, despite much larger hand RTs (similar to 90 ms). Moreover, changes in mean eye RTs, which also increased eye RT variance, produced a similar increase in mean and variance of the associated hand RT. Taken together, these data suggest that a dedicated circuit underlies coordinated eye-hand planning.