7 resultados para Garnets

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rare earth iron garnets Ln3Fe5O12 and Y3AlxFe5-xO12, where x=1.0-5.0, and Y1.5Gd1.5Al0.2Fe4.8O12 have been prepared by the combustion of redox mixtures containing corresponding metal nitrates and oxalyl dihydrazide, i.e. C2H6N4O2 at 350-degrees-C. The solid combustion products are amorphous, submicrometre-sized powders which, on heating at 750-degrees-C for 3 h, yield crystalline single-phase garnets. The particle size of the garnets is below 1 mum and the surface area ranges from 16 to 90 m2 g-1. Yttrium iron garnet could be sintered to a density of more than 95% at 1200-degrees-C for 3 h, giving an average grain size of 3-5 mum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Palghat–Cauvery suture zone in southern India separates Archaean crustal blocks to the north and the Proterozoic Madurai block to the south. Here we present the first detailed study of a partially retrogressed eclogite (from within the Sittampundi anorthositic complex in the suture zone) that occurs as a 20-cm wide layer in a garnet gabbro layer in anorthosite. The eclogite largely consists of an assemblage of coexisting porphyroblasts of almandine–pyrope garnet and augitic clinopyroxene. However, a few garnets contain inclusions of omphacite. Rims and symplectites composed of Na–Ca amphibole and plagioclase form a retrograde assemblage. Petrographic analysis and calculated phase equilibria indicate that garnet–omphacite–rutile–melt was the peak metamorphic assemblage and that it formed at ca. 20 kbar and above 1000 °C. The eclogite was exhumed on a very tight hairpin-type, anticlockwise P–T path, which we relate to subduction and exhumation in the Palghat–Cauvery suture zone. The REE composition of the minerals suggests a basaltic oceanic crustal protolith metamorphosed in a subduction regime. Geological–structural relations combined with geophysical data from the Palghat–Cauvery suture zone suggest that the eclogite facies metamorphism was related to formation of the suture zone. Closure of the Mozambique Ocean led to development of the suture zone and to its western extension in the Betsimisaraka suture of Madagascar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The garnet-kyanite-staurolite and garnet-biotite-staurolite gneisses were collected from a locality within Lukung area that belongs to the Pangong metamorphic complex in Shyok valley, Ladakh Himalaya. The kyanite-free samples have garnet and staurolite in equilibrium, where garnets show euhedral texture and have flat compositional profile. On the other hand, the kyanite-bearing sample shows equilibrium assemblage of garnet-kyanite-staurolite along with muscovite and biotite. In this case, garnet has an inclusion rich core with a distinct grain boundary, which was later overgrown by inclusion free euhedral garnet. Garnet cores are rich in Mn and Ca, while the rims are poor in Mn and rich in Fe and Mg, suggesting two distinct generations of growth. However, the compositional profiles and textural signature of garnets suggests the same stage of P -T evolution for the formation of the inclusion free euhedral garnets in the kyanite-free gneisses and the inclusion free euhedral garnet rims in the kyanite-bearing gneiss. Muscovites from the four samples have consistent K-Ar ages, suggesting the cooling age (∼ 10 Ma) of the gneisses. These ages make a constraint on the timing of the youngest post-collision metamorphic event that may be closely related to an activation of the Karakoram fault in Pangong metamorphic complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a detailed description on crustal metamorphic signatures of garnet-clinopyroxene-quartz-rutile-bearing high P-T granulites, Samgot unit, Imajingang belt, northwestern Korean Peninsula that formed during Permo-Triassic regional metamorphism related to the amalgamation of East Asian continental fragments. Lenses and blocks of high P-T granulites and garnet-bearing leucosomes occur within mafic metamorphic rocks (mainly amphibolites). The mafic blocks comprise relicts of granoblastic garnet and clinopyroxene with medium-grained quartz and rutile. These relict mineral assemblages are confined to local micro-domains and constitute remnants of peak metamorphism. Plagioclase and amphibole form only as retrograde phases in medium ton coarse-grained moats that rim grain boundaries between relict peak mineral assemblages. This microstructure represents the reaction between garnet, clinopyroxene, quartz and rutile in the presence of melt to form amphibole, plagioclase and titanite with minor biotite. The leucosome domains consist of euhedral garnets within the quartz-K feldspar-plagioclase (granitic) matrix, probably representing peritectic garnet growth along with melting. The rare earth element (REE) composition of minerals also support the peritectic garnet growth with a positive Eu/Eu* (positive Eu anomaly), while the relict garnet shows a slight negative anomaly typical for high-grade granulites. The peak-metamorphic conditions calculated from thermodynamic modeling and compositional isopleths indicate a temperature around c. 900 degrees C at a pressure around c. 20 kbar. The present P-T path indicates a clear multi-stage decompression history with initial decompression and cooling followed by a stage of decompression during hydration possibly during Late Triassic exhumation. The results from this study together with the presence of eclogites from the Hongsung area suggest that the Imjingang area and the western Gyeonggi massif likely resided at crustal levels deeper than those of the eastern and southern part of the Gyeonggi massif. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Garnet-kyanite-staurolite gneiss in the Pangong complex, Ladakh Himalaya, contains porphyroblastic euhedral garnets, blades of kyanite and resorbed staurolite surrounded by a fine-grained muscovite-biotite matrix associated with a leucogranite layer. Sillimanite is absent. The gneiss contains two generations of garnet in cores and rims that represent two stages of metamorphism. Garnet cores are extremely rich in Mn (X(Sps) = 0.35-038) and poor in Fe (X(Alm) = 0.40-0.45), whereas rims are relatively Mn-poor (X(Sps) =0.07-0.08), and rich in Fe (X(Alm), = 0.75-0.77). We suggest that garnet cores formed during prograde metamorphism in a subduction zone followed by abrupt exhumation, during early collision of the Ladakh arc and Karakoram block. The subsequent India-Asia continental collision subducted the metamorphic rocks to a mid-crustal level, where the garnet rims overgrew the Mn-rich cores at ca. 680 degrees C and ca. 8.5 kbar. PT calculations were estimated from phase diagrams calculated using a calculated bulk chemical composition in the Mn-NCKFMASHT system for the garnet-kyanite-staurolite-bearing assemblage. Muscovites from the metamorphic rocks and associated leucogranites have consistent K-Ar ages (ca. 10 Ma), closely related to activation of the Karakoram fault in the Pangong metamorphic complex. These ages indicate the contemporaneity of the exhumation of the metamorphic rocks and the cooling of the leucogranites. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10-11 kbar and 450-650 degrees C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 degrees C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic-ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, Iherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24-22 kbar and 1060-1040 degrees C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm-Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic-ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite-trondhjemite-granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a >90 km x 40 km-size slab of continental crust containing mafic-ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic-ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean. (C) 2012 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gd3+ doped Y3-xGdxFe5O12 (x=0.0, 0.05, 0.15, and 0.25) nanopowders were prepared using modified sol-gel route. The structural characterizations such as X-ray diffraction, transmission electron microscopy has been carried out. The nanopowders were sintered at 700 degrees C/3 h. The lattice parameters and density of the samples were increased with an increase of Gd3+ concentration. The microstructure was analyzed using atomic force microscopy. The room temperature dielectric (epsilon' and epsilon `') and magnetic (mu' and mu `') properties were measured in the frequency range 5-50 GHz. with Gd3+ the dielectric properties were enhanced, but there is a decrease in the magnetic properties. The room temperature magnetization studies were carried out up to 1.5 T. the saturation and remnant magnetization were decreased with an increase of gadolinium concentration. These garnets have low permeability, low losses and a broad distribution of FMR line width which makes them a promising material for microwave devices can be used in the high frequency range i.e. up to 50 GHz. (C) 2013 Elsevier BM. All rights reserved.