5 resultados para Games in education
em Indian Institute of Science - Bangalore - Índia
Resumo:
In this paper, we propose new solution concepts for multicriteria games and compare them with existing ones. The general setting is that of two-person finite games in normal form (matrix games) with pure and mixed strategy sets for the players. The notions of efficiency (Pareto optimality), security levels, and response strategies have all been used in defining solutions ranging from equilibrium points to Pareto saddle points. Methods for obtaining strategies that yield Pareto security levels to the players or Pareto saddle points to the game, when they exist, are presented. Finally, we study games with more than two qualitative outcomes such as combat games. Using the notion of guaranteed outcomes, we obtain saddle-point solutions in mixed strategies for a number of cases. Examples illustrating the concepts, methods, and solutions are included.
Resumo:
This paper considers nonzero-sum multicriteria games with continuous kernels. Solution concepts based on the notions of Pareto optimality, equilibrium, and security are extended to these games. Separate necessary and sufficient conditions and existence results are presented for equilibrium, Pareto-optimal response, and Pareto-optimal security strategies of the players.
Resumo:
This paper addresses some of the basic issues involved in the determination of rational strategies for players in two-target games. We show that unlike single-target games where the task of role assignment and selection of strategies is conceptually straightforward, in two-target games, many factors like the preference ordering of outcomes by players, the relative configuration of the target sets and secured outcome regions, the uncertainty about the parameters of the game, etc., also influence the rational selection of strategies by players. The importance of these issues is illustrated through appropriate examples.
Resumo:
Competition for available resources is natural amongst coexisting species, and the fittest contenders dominate over the rest in evolution. The. dynamics of this selection is studied using a simple linear model. It has similarities to features of quantum computation, in particular conservation laws leading to destructive interference. Compared to an altruistic scenario, competition introduces instability and eliminates the weaker species in a finite time.
Resumo:
In this paper we first derive a necessary and sufficient condition for a stationary strategy to be the Nash equilibrium of discounted constrained stochastic game under certain assumptions. In this process we also develop a nonlinear (non-convex) optimization problem for a discounted constrained stochastic game. We use the linear best response functions of every player and complementary slackness theorem for linear programs to derive both the optimization problem and the equivalent condition. We then extend this result to average reward constrained stochastic games. Finally, we present a heuristic algorithm motivated by our necessary and sufficient conditions for a discounted cost constrained stochastic game. We numerically observe the convergence of this algorithm to Nash equilibrium. (C) 2015 Elsevier B.V. All rights reserved.