41 resultados para Galvanic waste

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fermentation characteristics of six specific types of the organic fraction of municipal solid waste (OFMSW) were examined, with an emphasis on properties that are needed when designing plug-flow type anaerobic bioreactors. More specifically, the decomposition patterns of a vegetable (cabbage), fruits (banana and citrus peels), fresh leaf litter of bamboo and teak leaves, and paper (newsprint) waste streams as feedstocks were studied. Individual OFMSW components were placed into nylon mesh bags and subjected to various fermentation periods (solids retention time, SRT) within the inlet of a functioning plug-flow biogas fermentor. These were removed at periodic intervals, and their composition was analyzed to monitor decomposition rates and changes in chemical composition. Components like cabbage waste, banana peels, and orange peels fermented rapidly both in a plug-flow biogas reactor (PFBR) as well as under a biological methane potential (BMP) assay, while other OFMSW components (leaf litter from bamboo and teak leaves and newsprint) fermented slowly with poor process stability and moderate biodegradation. For fruit and vegetable wastes (FVW), a rapid and efficient removal of pectins is the main cause of rapid disintegration of these feedstocks, which left behind very little compost forming residues (2–5%). Teak and bamboo leaves and newsprint decomposed only to 25–50% in 30 d. These results confirm the potential for volatile fatty acids accumulation in a PFBR’s inlet and suggest a modification of the inlet zone or operation of a PFBR with the above feedstocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermodynamic activities of MgO in the NaCl-type solid solutions which can exist in xMgO + (1 x)MnO have been determined in the temperature range 1163 to 1318 K from a solid-state galvanic cell incorporating MgF2 as the solid electrolyte. The activities of MnO have been calculated by a graphical Gibbs-Duhem integration method. The activities of both the components exhibit positive deviations from ideality over the entire composition range. The excess molar enthalpies are found to be positive. Further, xMgO + (1 - x)MnO does not conform to regular-solution behaviour. The origin of the excess thermodynamic properties is discussed in relation to the cationic size disparity and the crystal-field effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constitutive model is proposed to describe the stress-strain behavior of municipal solid waste (MSW) under loading using the critical state soil mechanics framework. The modified cam clay model is extended to incorporate the effects of mechanical creep and time dependent biodegradation to calculate total compression under loading. Model parameters are evaluated based on one-dimensional compression and triaxial consolidated undrained test series conducted on three types of MSW: (a) fresh MSW obtained from working phase of a landfill, (b) landfilled waste retrieved from a landfill after 1.5 years of degradation, and (c) synthetic MSW with controlled composition. The model captures the stress-strain and pore water pressure response of these three types of MSW adequately. The model is useful for assessing the deformation and stability of landfills and any post-closure development structures located on landfills.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fuzzy Waste Load Allocation Model (FWLAM), developed in an earlier study, derives the optimal fractional levels, for the base flow conditions, considering the goals of the Pollution Control Agency (PCA) and dischargers. The Modified Fuzzy Waste Load Allocation Model (MFWLAM) developed subsequently is a stochastic model and considers the moments (mean, variance and skewness) of water quality indicators, incorporating uncertainty due to randomness of input variables along with uncertainty due to imprecision. The risk of low water quality is reduced significantly by using this modified model, but inclusion of new constraints leads to a low value of acceptability level, A, interpreted as the maximized minimum satisfaction in the system. To improve this value, a new model, which is a combination Of FWLAM and MFWLAM, is presented, allowing for some violations in the constraints of MFWLAM. This combined model is a multiobjective optimization model having the objectives, maximization of acceptability level and minimization of violation of constraints. Fuzzy multiobjective programming, goal programming and fuzzy goal programming are used to find the solutions. For the optimization model, Probabilistic Global Search Lausanne (PGSL) is used as a nonlinear optimization tool. The methodology is applied to a case study of the Tunga-Bhadra river system in south India. The model results in a compromised solution of a higher value of acceptability level as compared to MFWLAM, with a satisfactory value of risk. Thus the goal of risk minimization is achieved with a comparatively better value of acceptability level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An expression for the EMF of a nonisothermal galvanic cell, with gradients in both temperature and chemical potential across a solid electrolyte, is derived based on the phenomenological equations of irreversible thermodynamics. The EMF of the nonisothermal cell can be written as a sum of the contributions from the chemical potential gradient and the EMF of a thermocell operating in the same temperature gradient but at unit activity of the neutral form of the migrating species. The validity of the derived equation is confirmed experimentally by imposing nonlinear gradients of temperature and chemical potential across galvanic cells constructed using fully stabilized zirconia as the electrolyte. The nature of the gradient has no effect on the EMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The criterion for the design of a temperature-compensated reference electrode for non-isothermal galvanic sensors is deduced from the basic flux equations of irreversible thermodynamics. It is shown that when the Seebeck coefficient of the non-isothermal cell using a solid oxygen ion-conducting electrolyte under pure oxygen is equal to the relative partial molar entropy of oxygen in the reference electrode divided by 4F, then the EMF of the non-isothermal cell is the same as that of an isothermal cell with the same electrodes operating at the higher temperature. By measuring the temperature of the melt alone and the EMF of the non-isothermal galvanic sensor, one can derive the chemical potential or the concentration of oxygen in a corrosive medium. The theory is experimentally checked using sensors for oxygen in liquid copper constructed with various metal+oxide electrodes and fully stabilised (CaO)ZrO2 as the electrolyte. To satisfy the exact condition for temperature compensation it is often necessary to have the metal or oxide as a solid solution in the reference electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent trends in the use of dispersed solid electrolytes and auxiliary electrodes in galvanic cells have increased the need for assessment of materials compatibility. In the design of dispersed solid electrolytes, the potential reactions between the dispersoid and the matrix must be considered. In galvanic cells, possible interactions between the dispersoid and the electrode materials must also be considered in addition to ion exchange between the matrix and the electrode. When auxiliary electrodes, which convert the chemical potential of a component present at the electrode into an equivalent chemical potential of the neutral form of the migrating species in the solid electrolyte are employed, displacement reactions between phases in contact may limit the range of applicability of the cell. Examples of such constraints in the use of oxide dispersoids in fluoride solid electrolytes and NASICON/Na2S couple for measurement of sulphur potential are illustrated with the aid of Ellingham and stability field diagrams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of NiO in NiO-MgO rock salt solid solution has been measured at 1300 K by employing a solid-state galvanic cell: Pt,Ni+ NiO||(CaO)ZrO2||Ni + (Nix,Mgl-x)O, Pt. A high-density tube of Zr02-15 mol% CaO has been used as the solid electrolyte for the emf measurements. The activities of the component oxides in the rock salt solid solution exhibit negative deviation from ideality at the temperature of investigation. The solid solution obeys regular solution behavior at 1300 K. The value of the regular solution parameter is found to be -12000 ((l000) J mol-1. The composition dependence of ΔGEx obtained in this study agrees reasonably well with the calorimetric data reported in the literature for NiO-MgO solid solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The terminal solid solubilities of the periclase (MgO-rich) and zincite (ZnO-rich) solid solutions in the MgO---ZnO system have been determined by measuring the activity of MgO using a solid-state galvanic cell of the type 02(g), Pt/MgO, MgF2//MgF2//{χMgO+(1-χ)ZnO}(s, sln), MgF2/Pt, O2(g) in the temperature range 900–1050°C. The ZnO activity was calculated by graphical Gibbs-Duhem integration. The activity-composition plots of both components exhibit a strong positive deviation from ideality and are characterised by a miscibility gap. The terminal solid solubilities of the periclase and zincite solid solutions obtained from the activity-composition plots are found to be in reasonable agreement with those reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide materials like perovskite, zirconolite, hollandite, pyrochlore, NASICON and sphene which are used for nuclear waste immobilization have been prepared by a solution combustion process. The process involves the combustion of stoichiometric amount of corresponding metal nitrates and carbohydrazide/tetraformyl trisazine/diformyl hydrazide at 450 degrees C. The combustion products have been characterized using powder X-ray diffraction, infrared spectroscopy, and Si-29 MAS-NMR. The fine particle nature of the combustion derived powders has been studied using density, particle size, BET surface area measurements and scanning electron microscopy. Sintering of combustion derived powder yields 85-95% dense ceramics in the temperature range 1000 degrees-1300 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nonliving waste biomass consisting of Aspergillus niger attached to wheat bran was used as a biosorbent for the removal of copper and zinc from aqueous solutions. Copper and zinc uptake by the biomass obeyed Langmuir isotherms. The binding capacity of the biomass for copper was found to be higher than that for zinc. The metal uptake, expressed in milligrams per gram of biomass, was found to be a function of: the initial metal concentration (with the uptake decreasing with increasing initial concentration), the biomass loading (with the uptake decreasing with increasing biomass loading) and pH (with the uptake increasing with increasing pH in the range of 1.5 and 6.0). The metal uptake was significantly affected in the presence of a co-ion. The uptake of copper by the biomass decreased in the presence of zinc and vice versa. The decrease in metal uptake was dependent on the concentrations of metals in the two-component aqueous solutions. The effect of copper on zinc uptake was more pronounced than the effect of zinc on copper uptake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new diazotizing reagent for the spectrophotometric determination of nitrite is described. The method is based on diazotization-coupling reaction between dapsone and phloroglucinol in hydrochloric acid medium. The reactions were conducted at room temperature, the molor absorptivity at 425 nm is 4.28 x 10(4) 1 Mol, (1)cm(-1) and was stable for 50 h. Beer's law was obeyed in the nitrite range of 0.008 - 1.0 mug ml(-1). Tolerance limits were tested for 33 species. The method has been found to be applicable for the determination of nitrite in natural and wastewater.