20 resultados para Gait in humans
em Indian Institute of Science - Bangalore - Índia
Resumo:
A role for oestrogen in regulating fluid reabsorption in the monkey epididymis was recently demonstrated. Here, these Studies are extended to identify potential oestrogen-regulated proteins in the cauda region of monkey epididymis treated with vehicle and oestrogen receptor antagonist (ICI 182780). Two-dimensional electrophoretic analysis was used to identify the proteins. The results indicated down-regulation of WNT4 in the ICI-182780-treated monkey cauda. In addition. the Wnt4f mRNA concentration was also reduced in the caput regions of ICI-182780-treated rats and oestrogen receptor knockout mice. WNT4 is a key regulator of gonadal differentiation in humans and mice and plays a pivotal role in early mouse embryogenesis. The results of the present Study establish the presence of WNT4 in the monkey epididymis and its regulation by oestrogen, and Suggest a role for WNT4 in maintaining epididymal homeostasis.
Resumo:
The ability of a monkey antiserum to ovine LH to interrupt gestation in monkeys has been established. The antiserum has been shown to neutralize monkey pituitary LH by a number of criteria. The significant increase in serum progesterone level on day 23 of the cycle shown by mated monkeys has been used as an index of pregnancy. Injection of LH antiserum during the first week of missed menses (day 29–31 of cycle or day 18–20 of gestation) causes significant reduction in serum levels of progesterone followed by onset of bleeding which is interpreted as the termination of gestation. The same dose of non-immune serum given to monkeys during the same period does not have any deleterious effect on the progress of pregnancy. The antiserum-treated animals after the termination of gestation, resume cyclicity. Injection of antiserum after day 25 of gestation does not bring about termination of pregnancy. It is suggested that by using antisera raised in humans to ovine LH, this method may be developed as a fertility control measure in humans.
Resumo:
Aurora kinases are essential for chromosomal segregation and cell division and thereby important for maintaining the proper genomic integrity. There are three classes of aurora kinases in humans: A, B, and C. Aurora kinase A is frequently overexpressed in various cancers. The link of the overexpression and tumorigenesis is yet to be understood. By employing virtual screening, we have found that anacardic acid, a pentadecane aliphatic chain containing hydroxylcarboxylic acid, from cashew nut shell liquid could be docked in Aurora kinases A and B. Remarkably, we found that anacardic acid could potently activate the Aurora kinase A mediated phosphorylation of histone H3, but at a similar concentration the activity of aurora kinase B remained unaffected in vitro. Mechanistically, anacardic acid induces the structural changes and also the autophosphorylation of the aurora kinase A to enhance the enzyme activity. This data thus indicate anacardic acid as the first small-molecule activator of Aurora kinase, which could be highly useful for probing the function of hyperactive (overexpressed) Aurora kinase A.
Resumo:
Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of delta pam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process.
Resumo:
Pentoxifylline (PF) is used to improve motility of spermatozoa from subfertile or nonfertile males to accomplish in vitro fertilization in humans. The possible adverse effect of PF on pre- and peri- implantation stage embryo development in a suitable rodent model, such as the golden hamster, is yet to be determined. In this study, hamster cauda epididymal spermatozoa were exposed to different concentrations (0.23 to 3.6 mM) of PF, and their quantitative [percentage of motility] and qualitative [Score 0 to 5] motility were assessed and values expressed as the sperm motility index. Upon addition of spermatozoa to dishes containing PF, an immediate increase in sperm motility and sperm motility index was evident, which increased up to 4 to 6 h and then declined. The sperm motility index increase by PF was dose-dependant, and greater than or equal to 1.8 mM PF was detrimental after 4 h. The optimum dose of PF was found to be 0.45 mM. To assess the fertilizing ability of PF-treated spermatozoa, in vitro fertilization was carried out. Fertilization rates for spermatozoa treated with 3.6 mM PF were lower (53.8 +/- 7.8) than for the controls (69.5 +/- 10.2), whereas, treatment with 0.45 mM PF increased the rates (91.6 +/- 4.3) compared with that of the controls (80.2 +/- 5.9). In conclusion, low concentrations (0.23 to 0.45 mM) of PF improve sperm capacitation and fertilization of oocytes in vitro in the golden hamster.
Resumo:
Previous studies have shown predominant association of G10P11 type bovine rotavirus-derived reassortant strains with asymptomatic infections in newborn children in India. To understand the epidemiological and genetic basis for the origin of these strains in humans, the relative frequencies of different serotypes among bovine rotaviruses (BRVs) isolated from southern, western and central regions of the country were determined by subgroup and serotype analysis as well as nucleotide (nt) sequence analysis of the genes encoding the outer capsid proteins VP4 and VP7. Since the human G10P11 asymptomatic neonatal strain I321 possessed NSP1 from a human rotavirus, to determine its genetic origin in the bovine strains, comparative analysis of partial gene sequences from representative G10P11 strains was also carried out. The following observations were of great epidemiological significance, (i) G10P11 strains predominated in all the three regions with frequencies ranging between 55.6% and 85.2%. In contrast to the high prevalence of G6 strains in other countries, only one G6 strain was detected in this study and G8 strains represented 5.8% of the isolates, (ii) among the G10 strains, in serotyping ELISA, four patterns of reactivity were observed that appeared to correlate with the differences in electropherotypic patterns and amino acid (aa) sequence of the VP7, (iii) surprisingly, strains belonging to serotype G3 were detected more frequently (10.7%) than those of serotypes G6 and G8 combined, while strains representing the new serotype (G15) were observed in a single farm in Bangalore, and (iv) about 3.9% of the isolates were nontypeable as they exhibited high cross-reactivity to the serotyping MAbs used in the study. Comparative analysis of the VP7 gene sequence from the prototype G3 MAb-reactive bovine strain J63 revealed greatest sequence relatedness (87.6% nt and 96.0% aa) with that of serotype G3 rhesus-monkey strain RRV. It also exhibited high sequence homology with the VP7 from several animal and animal rotavirus-related human G3 strains (Simian SA11; equine ERV316 and FI-14. canine CU-1 and K9; porcine 4F; Feline Cat2 and human HCR3, YO and AU1). Partial nucleotide sequence analysis of the NSP1 gene of J63 showed greatest nt sequence homology (95.9%) to the NSP1 gene allele of the Indian G8 strain, isolated from a diarrheic child, which is likely to have been transmitted directly from cattle and 92.6% homology to that of the bovine G8 strain A5-10 suggesting the likely origin of J63 by gene reassortment between a bovine G8 strain and a G3 animal strain. Prevalence of G10P11 strains in cattle and G10P11 or P11 type reassortant strains in asymptomatic neonates as well as detection of G8P[1] strains in diarrheic children support our hypothesis for bidirectional transmission of rotaviruses between humans and cattle and origin of novel strains catalyzed by the age-old traditions and socio-economic conditions in India.
Resumo:
Background: Fighter pilots are frequently exposed to high temperatures during high-speed low-level flight. Heat strain can result in temporary impairment of cognitive functions and when severe, loss of consciousness and consequent loss of life and equipment. Induction of stress proteins is a highly conserved stress response mechanism from bacteria to humans. induced stress protein levels are known to be cytoprotective and have been correlated with stress tolerance. Although many studies on the heat shock response mechanisms have been performed in cell culture and animal model systems, there is very limited information on stress protein induction in human subjects. Hypothesis: Heat shock proteins (Hsp), especially Hsp70, may be induced in human subjects exposed to high temperatures in a hot cockpit designed to simulate heat stress experienced in low flying sorties. Methods: Six healthy volunteers were subjected to heat stress at 55degreesC in a high temperature cockpit simulator for a period of 1 h at 30% humidity. Physiological parameters such as oral and skin temperatures, heart rate, and sweat rate were monitored regularly during this time. The level of Hsp70 in leukocytes was examined before and after the heat exposure in each subject. Conclusions: Hsp70 was found to be significantly induced in all the six subjects exposed to heat stress. The level of induced Hsp70 appears to correlate with other strain indicators such as accumulative circulatory strain and Craig's modified index. The usefulness of Hsp70 as a molecular marker of heat stress in humans is discussed.
Resumo:
The regulation of cell proliferation in the external granular layer (EGL) of the developing cerebellum is important for its normal patterning. An important signal that regulates EGL cell proliferation is Sonic hedgehog (Shh). Shh is secreted by the Purkinje cells (PC) and has a mitogenic effect on the granule cell precursors of the EGL. Deregulation of Shh signaling has been associated with abnormal development, and been implicated in medulloblastomas, which are tumors that arise from the cerebellum. Given the importance of the Shh pathway in cerebellum development and disease, there has been no systematic study of its expression pattern during human cerebellum development. In this study, we describe the expression pattern of Shh, its receptor patched, smoothened, and its effectors that belong to the Gli family of transcription factors, during normal human cerebellum development from 10 weeks of gestational age, and in medulloblastomas that represents a case of abnormal cell proliferation in the cerebellum. This expression pattern is compared to equivalent stages in the normal development of cerebellum in mouse, as well as in tumors. Important differences between human and mouse that reflect differences in the normal developmental program between the 2 species are observed. First, in humans there appears to be a stage of Shh signaling within the EGL, when the PC are not yet the source of Shh. Second, unlike in the postnatal mouse cerebellum, expression of Shh in the PC in the postnatal human cerebellum is downregulated. Finally, medulloblastomas in the human but not in patched heterozygote mouse express Shh. These results highlight cross-species differences in the regulation of the Shh signaling pathway.
Resumo:
Takifugu rubripes is teleost fish widely used in comparative genomics to understand the human system better due to its similarities both in number of genes and structure of genes. In this work we survey the fugu genome, and, using sensitive computational approaches, we identify the repertoire of putative protein kinases and classify them into groups and subfamilies. The fugu genome encodes 519 protein kinase-like sequences and this number of putative protein kinases is comparable closely to that of human. However, in spite of its similarities to human kinases at the group level, there are differences at the subfamily level as noted in the case of KIS and DYRK subfamilies which contribute to differences which are specific to the adaptation of the organism. Also, certain unique domain combination of galectin domain and YkA domain suggests alternate mechanisms for immune response and binding to lipoproteins. Lastly, an overall similarity with the MAPK pathway of humans suggests its importance to understand signaling mechanisms in humans. Overall the fugu serves as a good model organism to understand roles of human kinases as far as kinases such as LRRK and IRAK and their associated pathways are concerned.
Resumo:
Trypanosomatids cause deadly diseases in humans. Of the various biochemical pathways in trypanosomatids, glycolysis, has received special attention because of being sequestered in peroxisome like organelles critical for the survival of the parasites. This study focuses on phosphoglycerate kinase (PGK) from Leishmania spp. which, exists in two isoforms, the cytoplasmic PGKB and glycosomal PGKC differing in their biochemical properties. Computational analysis predicted the likelihood of a transmembrane helix only in the glycosomal isoform PGKC, of approximate length 20 residues in the 62-residue extension, ending at, arginine residues R471 and R472. From experimental studies using circular dichroism and NMR with deuterated sodium dodecyl sulfate, we find that the transmembrane helix spans residues 448 +/- 2 to 476 in Leishmania mexicana PGKC. The significance of this observation is discussed in the context of glycosomal transport and substrate tunneling. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, (3R,4S,5S,6R)-5-methoxy-4-(2R,3R)-2-methyl-3-(3-methylbut-2-enyl) oxiran-2-yl]-1-oxaspiro2.5]octan-6-yl] N-(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability. To probe the basis of its in vivo efficacy, the metabolism of PPI-2458 was studied in detail. Reaction phenotyping identified CYP3A4/5 as the major source of metabolism in humans. Six metabolites were isolated from liver microsomes and characterized by mass spectrometry and nuclear resonance spectroscopy, and their structures were confirmed by chemical synthesis. The synthetic metabolites showed correlated inhibition of MetAP2 enzymatic activity and vascular endothelial cell growth. In an ex vivo experiment, MetAP2 inhibition in white blood cells, thymus, and lymph nodes in rats after single dosing with PPI-2458 and the isolated metabolites was found to correlate with the in vitro activity of the individual species. In a phase 1 clinical study, PPI-2458 was administered to patients with non-Hodgkin lymphoma. At 15 mg administered orally every other day, MetAP2 in whole blood was 80% inactivated for up to 48 hours, although the exposure of the parent compound was only similar to 10% that of the summed cytochrome P450 metabolites. Taken together, the data confirm the participation of active metabolites in the in vivo efficacy of PPI-2458. The structures define a metabolic pathway for PPI-2458 that is distinct from that of TNP-470 ((3R, 4S, 5S, 6R)-5-methoxy-4-(2R, 3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro2.5]octan-6 -yl] N-(2-chloroacetyl)carbamate). The high level of MetAP2 inhibition achieved in vivo supports the value of fumagillin-derived therapeutics for angiogenic diseases.
Resumo:
Propranolol, a beta-adrenergic receptor blocker, is presently considered to be a potential therapeutic intervention under investigation for its role in prevention and treatment of osteoporosis. However, no studies have compared the osteoprotective properties of propranolol with well accepted therapeu-tic interventions for the treatment of osteoporosis. To address this question, this study was designed to evaluate the bone protective effects of zoledronic acid, alfacalcidol and propranolol in an animal model of postmenopausal osteoporosis. Five days after ovariectomy, 36 ovariectomized (OVX) rats were divided in- to 6 equal groups, randomized to treatments zoledronic acid (100 μg/kg, intravenous single dose); alfacal-cidol (0.5 μg/kg, oral gauge daily); propranolol (0.1mg/kg, subcutaneously 5 days per week) for 12 weeks. Untreated OVX and sham OVX were used as controls. At the end of the study, rats were killed under anesthesia. For bone porosity evaluation, whole fourth lumbar vertebrae (LV4) were removed. LV4 were also used to measure bone mechanical propeties. Left femurs were used for bone histology. Propranolol showed a significant decrease in bone porosity in comparison to OVX control. Moreover, propranolol sig- nificantly improved bone mechanical properties and bone quality when compared with OVX control. The osteoprotective effect of propranolol was comparable with zoledronic acid and alfacalcidol. Based on this comparative study, the results strongly suggest that propranolol might be new therapeutic intervention for the management of postmenopausal osteoporosis in humans.
Resumo:
Human La protein is known to be an essential host factor for translation and replication of hepatitis C virus (HCV) RNA. Previously, we have demonstrated that residues responsible for interaction of human La protein with the HCV internal ribosomal entry site (IRES) around the initiator AUG within stem-loop IV form a beta-turn in the RNA recognition motif (RRM) structure. In this study, sequence alignment and mutagenesis suggest that the HCV RNA-interacting beta-turn is conserved only in humans and chimpanzees, the species primarily known to be infected by HCV. A 7-mer peptide corresponding to the HCV RNA-interacting region of human La inhibits HCV translation, whereas another peptide corresponding to the mouse La sequence was unable to do so. Furthermore, IRES-mediated translation was found to be significantly high in the presence of recombinant human La protein in vitro in rabbit reticulocyte lysate. We observed enhanced replication with HCV subgenomic and full-length replicons upon overexpression of either human La protein or a chimeric mouse La protein harboring a human La beta-turn sequence in mouse cells. Taken together, our results raise the possibility of creating an immunocompetent HCV mouse model using human-specific cell entry factors and a humanized form of La protein.
Resumo:
Staphylococcus aureus is a commensal gram positive bacteria which causes severe and non severe infections in humans and livestock. In India, ST772 is a dominant and ST672 is an emerging clone of Staphylococcus aureus. Both cause serious human diseases, and carry type V SCCmec elements. The objective of this study was to characterize SCCmec type V elements of ST772 and ST672 because the usual PCR methods did not amplify all primers specific to the type. Whole genome sequencing analysis of seven ST772 and one ST672 S. aureus isolates revealed that the SCCmec elements of six of the ST772 isolates were the smallest of the extant type V elements and in addition have several other novel features. Only one ST772 isolate and the ST672 isolate carried bigger SCCmec cassettes which were composites carrying multiple ccrC genes. These cassettes had some similarities to type V SCCmec element from M013 isolate (ST59) from Taiwan in certain aspects. SCCmec elements of all Indian isolates had an inversion of the mec complex, similar to the bovine SCCmec type X. This study reveals that six out of seven ST772 S. aureus isolates have a novel type V (5C2) SCCmec element while one each of ST772 and ST672 isolates have a composite SCCmec type V element (5C2&5) formed by the integration of type V SCCmec into a MSSA carrying a SCC element, in addition to the mec gene complex inversions and extensive recombinations.
Resumo:
Cancer is a complex disease which arises due to a series of genetic changes related to cell division and growth control. Cancer remains the second leading cause of death in humans next to heart diseases. As a testimony to our progress in understanding the biology of cancer and developments in cancer diagnosis and treatment methods, the overall median survival time of all cancers has increased six fold one year to six years during the last four decades. However, while the median survival time has increased dramatically for some cancers like breast and colon, there has been only little change for other cancers like pancreas and brain. Further, not all patients having a single type of tumour respond to the standard treatment. The differential response is due to genetic heterogeneity which exists not only between tumours, which is called intertumour heterogeneity, but also within individual tumours, which is called intratumoural heterogeneity. Thus it becomes essential to personalize the cancer treatment based on a specific genetic change in a given tumour. It is also possible to stratify cancer patients into low- and high-risk groups based on expression changes or alterations in a group of genes gene signatures and choose a more suitable mode of therapy. It is now possible that each tumour can be analysed using various high-throughput methods like gene expression profiling and next-generation sequencing to identify its unique fingerprint based on which a personalized or tailor-made therapy can be developed. Here, we review the important progress made in the recent years towards personalizing cancer treatment with the use of gene signatures.