31 resultados para Functorial Embedding

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general derivation of the coupling constant relations which result on embedding a non-simple group like SU L (2) @ U(1) in a larger simple group (or graded Lie group) is given. It is shown that such relations depend only on the requirement (i) that the multiplet of vector fields form an irreducible representation of the unifying algebra and (ii) the transformation properties of the fermions under SU L (2). This point is illustrated in two ways, one by constructing two different unification groups containing the same fermions and therefore have same Weinberg angle; the other by putting different SU L (2) structures on the same fermions and consequently have different Weinberg angles. In particular the value sin~0=3/8 is characteristic of the sequential doublet models or models which invoke a large number of additional leptons like E 6, while addition of extra charged fermion singlets can reduce the value of sin ~ 0 to 1/4. We point out that at the present time the models of grand unification are far from unique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-band extended Hubbard model studies show that the shift in optical gap of the metal-halogen (MX) chain upon embedding in a crystalline environment depends upon alternation in the site-diagonal electron-lattice interaction parameter (epsilon(M)) and the strength of electron-electron interactions at the metal site (U(M)). The equilibrium geometry studies on isolated chains show that the MX chains tend to distort for alternating epsilon(M) and small U(M) values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a new state transition based embedding (STBE) technique for audio watermarking with high fidelity. Furthermore, we propose a new correlation based encoding (CBE) scheme for binary logo image in order to enhance the payload capacity. The result of CBE is also compared with standard run-length encoding (RLE) compression and Huffman schemes. Most of the watermarking algorithms are based on modulating selected transform domain feature of an audio segment in order to embed given watermark bit. In the proposed STBE method instead of modulating feature of each and every segment to embed data, our aim is to retain the default value of this feature for most of the segments. Thus, a high quality of watermarked audio is maintained. Here, the difference between the mean values (Mdiff) of insignificant complex cepstrum transform (CCT) coefficients of down-sampled subsets is selected as a robust feature for embedding. Mdiff values of the frames are changed only when certain conditions are met. Hence, almost 50% of the times, segments are not changed and still STBE can convey watermark information at receiver side. STBE also exhibits a partial restoration feature by which the watermarked audio can be restored partially after extraction of the watermark at detector side. The psychoacoustic model analysis showed that the noise-masking ratio (NMR) of our system is less than -10dB. As amplitude scaling in time domain does not affect selected insignificant CCT coefficients, strong invariance towards amplitude scaling attacks is also proved theoretically. Experimental results reveal that the proposed watermarking scheme maintains high audio quality and are simultaneously robust to general attacks like MP3 compression, amplitude scaling, additive noise, re-quantization, etc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two-dimensional axisymmetric problem of solidification of a superheated liquid in a long cylindrical mold has been studied in this paper by employing a new embedding technique. The mold and the melt has an imperfect contact and the heat transfer coefficient has been taken as a function of space and time. Short-time exact analytical solutions for the moving boundary and temperature distributions in the liquid, solid and mold have been obtained. The numerical results indicate that with the present solution, for some parameter values, substantial solidified thickness can be obtained. The method of solution is simple and straightforward, and consists of assuming fictitious initial temperatures for some suitable fictitious extensions of the actual regions. Sufficient conditions for the commencement of the solidification have been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A k-dimensional box is the Cartesian product R-1 x R-2 x ... x R-k where each R-i is a closed interval on the real line. The boxicity of a graph G, denoted as box(G) is the minimum integer k such that G is the intersection graph of a collection of k-dimensional boxes. Halin graphs are the graphs formed by taking a tree with no degree 2 vertex and then connecting its leaves to form a cycle in such a way that the graph has a planar embedding. We prove that if G is a Halin graph that is not isomorphic to K-4, then box(G) = 2. In fact, we prove the stronger result that if G is a planar graph formed by connecting the leaves of any tree in a simple cycle, then box(G) = 2 unless G is isomorphic to K4 (in which case its boxicity is 1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By employing a new embedding technique, a short-time analytical solution for the axisymmetric melting of a long cylinder due to an infinite flux is presented in this paper. The sufficient condition for starting the instantaneous melting of the cylinder has been derived. The melt is removed as soon as it is formed. The method of solution is simple and straightforward and consists of assuming fictitious initial temperature for some fictitious extension of the actual region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a new embedding technique, short time exact analytical solution of a two-dimensional axisymmetric problem of solidification of a superheated melt in a long cylindrical mold is presented in this paper. The prescribed flux could be space and time dependent. The method of solution is simple and is applicable to a variety of problems and consists of assuming suitable fictitious initial temperatures for some suitable fictitious extensions of the actual regions. The numerical results indicate that even a small solidified thickness can affect the initial temperature of the melt appreciably.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated measures of nonlinear dynamics and chaos theory in regards to heart rate variability in 27 normal control subjects in supine and standing postures, and 14 subjects in spontaneous and controlled breathing conditions. We examined minimum embedding dimension (MED), largest Lyapunov exponent (LLE) and measures of nonlinearity (NL) of heart rate time series. MED quantifies the system's complexity, LLE predictability and NL, a measure of deviation from linear processes. There was a significant decrease in complexity (P<0.00001), a decrease in predictability (P<0.00001) and an increase in nonlinearity (P=0.00001) during the change from supine to standing posture. Decrease in MED, and increases in NL score and LLE in standing posture appear to be partly due to an increase in sympathetic activity of the autonomous nervous system in standing posture. An improvement in predictability during controlled breathing appears to be due to the introduction of a periodic component. (C) 2000 published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Perfect or even mediocre weather predictions over a long period are almost impossible because of the ultimate growth of a small initial error into a significant one. Even though the sensitivity of initial conditions limits the predictability in chaotic systems, an ensemble of prediction from different possible initial conditions and also a prediction algorithm capable of resolving the fine structure of the chaotic attractor can reduce the prediction uncertainty to some extent. All of the traditional chaotic prediction methods in hydrology are based on single optimum initial condition local models which can model the sudden divergence of the trajectories with different local functions. Conceptually, global models are ineffective in modeling the highly unstable structure of the chaotic attractor. This paper focuses on an ensemble prediction approach by reconstructing the phase space using different combinations of chaotic parameters, i.e., embedding dimension and delay time to quantify the uncertainty in initial conditions. The ensemble approach is implemented through a local learning wavelet network model with a global feed-forward neural network structure for the phase space prediction of chaotic streamflow series. Quantification of uncertainties in future predictions are done by creating an ensemble of predictions with wavelet network using a range of plausible embedding dimensions and delay times. The ensemble approach is proved to be 50% more efficient than the single prediction for both local approximation and wavelet network approaches. The wavelet network approach has proved to be 30%-50% more superior to the local approximation approach. Compared to the traditional local approximation approach with single initial condition, the total predictive uncertainty in the streamflow is reduced when modeled with ensemble wavelet networks for different lead times. Localization property of wavelets, utilizing different dilation and translation parameters, helps in capturing most of the statistical properties of the observed data. The need for taking into account all plausible initial conditions and also bringing together the characteristics of both local and global approaches to model the unstable yet ordered chaotic attractor of a hydrologic series is clearly demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basic characteristic of a chaotic system is its sensitivity to the infinitesimal changes in its initial conditions. A limit to predictability in chaotic system arises mainly due to this sensitivity and also due to the ineffectiveness of the model to reveal the underlying dynamics of the system. In the present study, an attempt is made to quantify these uncertainties involved and thereby improve the predictability by adopting a multivariate nonlinear ensemble prediction. Daily rainfall data of Malaprabha basin, India for the period 1955-2000 is used for the study. It is found to exhibit a low dimensional chaotic nature with the dimension varying from 5 to 7. A multivariate phase space is generated, considering a climate data set of 16 variables. The chaotic nature of each of these variables is confirmed using false nearest neighbor method. The redundancy, if any, of this atmospheric data set is further removed by employing principal component analysis (PCA) method and thereby reducing it to eight principal components (PCs). This multivariate series (rainfall along with eight PCs) is found to exhibit a low dimensional chaotic nature with dimension 10. Nonlinear prediction employing local approximation method is done using univariate series (rainfall alone) and multivariate series for different combinations of embedding dimensions and delay times. The uncertainty in initial conditions is thus addressed by reconstructing the phase space using different combinations of parameters. The ensembles generated from multivariate predictions are found to be better than those from univariate predictions. The uncertainty in predictions is decreased or in other words predictability is increased by adopting multivariate nonlinear ensemble prediction. The restriction on predictability of a chaotic series can thus be altered by quantifying the uncertainty in the initial conditions and also by including other possible variables, which may influence the system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we investigated nonlinear measures of chaos of QT interval time series in 28 normal control subjects, 36 patients with panic disorder and 18 patients with major depression in supine and standing postures. We obtained the minimum embedding dimension (MED) and the largest Lyapunov exponent (LLE) of instantaneous heart rate (HR) and QT interval series. MED quantifies the system's complexity and LLE predictability. There was a significantly lower MED and a significantly increased LLE of QT interval time series in patients. Most importantly, nonlinear indices of QT/HR time series, MEDqthr (MED of QT/HR) and LLEqthr (LLE of QT/HR), were highly significantly different between controls and both patient groups in either posture. Results remained the same even after adjusting for age. The increased LLE of QT interval time, series in patients with anxiety and depression is in line with our previous findings of higher QTvi (QT variability index, a log ratio of QT variability corrected for mean QT squared divided by heart rate variability corrected for mean heart rate squared) in these patients, using linear techniques. Increased LLEqthr (LLE of QT/HR) may be a more sensitive tool to study cardiac repolarization and a valuable addition to the time domain measures such as QTvi. This is especially important in light of the finding that LLEqthr correlated poorly and nonsignificantly with QTvi. These findings suggest an increase in relative cardiac sympathetic activity and a decrease in certain aspects of cardiac vagal function in patients with anxiety as well as depression. The lack of correlation between QTvi and LLEqthr suggests that this nonlinear index is a valuable addition to the linear measures. These findings may also help to explain the higher incidence of cardiovascular mortality in patients with anxiety and depressive disorders. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general the objective of accurately encoding the input data and the objective of extracting good features to facilitate classification are not consistent with each other. As a result, good encoding methods may not be effective mechanisms for classification. In this paper, an earlier proposed unsupervised feature extraction mechanism for pattern classification has been extended to obtain an invertible map. The method of bimodal projection-based features was inspired by the general class of methods called projection pursuit. The principle of projection pursuit concentrates on projections that discriminate between clusters and not faithful representations. The basic feature map obtained by the method of bimodal projections has been extended to overcome this. The extended feature map is an embedding of the input space in the feature space. As a result, the inverse map exists and hence the representation of the input space in the feature space is exact. This map can be naturally expressed as a feedforward neural network.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a technique for irreversible watermarking approach robust to affine transform attacks in camera, biomedical and satellite images stored in the form of monochrome bitmap images. The watermarking approach is based on image normalisation in which both watermark embedding and extraction are carried out with respect to an image normalised to meet a set of predefined moment criteria. The normalisation procedure is invariant to affine transform attacks. The result of watermarking scheme is suitable for public watermarking applications, where the original image is not available for watermark extraction. Here, direct-sequence code division multiple access approach is used to embed multibit text information in DCT and DWT transform domains. The proposed watermarking schemes are robust against various types of attacks such as Gaussian noise, shearing, scaling, rotation, flipping, affine transform, signal processing and JPEG compression. Performance analysis results are measured using image processing metrics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present article reviews some of the current work on a new class of materials which are nanoscale granular materials. We shall discuss in this paper two phase granular materials where one of the phases having nanometric dimension is embedded in a matrix of larger dimension. Known as nanoembedded materials, nanocomposites or ultrafine granular materials, this class of materials has attracted attention because of the opportunity of basic studies on the effect of size and embedding matrix on transformation behaviors as well as some novel properties, which include structural, magnetic and transport properties. These are in addition to the tremendous interests in what is known as quantum structures(embedded particles size less than 5 nm) for the case of semiconductors, which will not be discussed here. We shall primarily review the work done on metallic systems where the dispersed phases have low melting points and borrow extensively from the work done in our group. The phase transformations of the embedded particles show distinctive behavior and yield new insights. We shall first highlight briefly the strategy of synthesis of these materials by non-equilibrium processing techniques, which will be followed by examples where the effect of length scales on phase transformation behaviors like melting and solidification are discussed.