23 resultados para Frequent flyer program
em Indian Institute of Science - Bangalore - Índia
Resumo:
A user friendly interactive computer program, CIRDIC, is developed which calculates the molar ellipticity and molar circular dichroic absorption coefficients from the CD spectrum. This, in combination with LOTUS 1-2-3 spread sheet, will give the spectra of above parameters vs wavelength. The code is implemented in MicroSoft FORTRAN 77 which runs on any IBM compatible PC under MSDOS environment.
Resumo:
The method of structured programming or program development using a top-down, stepwise refinement technique provides a systematic approach for the development of programs of considerable complexity. The aim of this paper is to present the philosophy of structured programming through a case study of a nonnumeric programming task. The problem of converting a well-formed formula in first-order logic into prenex normal form is considered. The program has been coded in the programming language PASCAL and implemented on a DEC-10 system. The program has about 500 lines of code and comprises 11 procedures.
Resumo:
A detailed analysis of structural and position dependent characteristic features of helices will give a better understanding of the secondary structure formation in globular proteins. Here we describe an algorithm that quantifies the geometry of helices in proteins on the basis of their C-alpha atoms alone. The Fortran program HELANAL can extract the helices from the PDB files and then characterises the overall geometry of each helix as being linear, curved or kinked, in terms of its local structural features, viz. local helical twist and rise, virtual torsion angle, local helix origins and bending angles between successive local helix axes. Even helices with large radius of curvature are unambiguously identified as being linear or curved. The program can also be used to differentiate a kinked helix and other motifs, such as helix-loop-helix or a helix-turn-helix (with a single residue linker) with the help of local bending angles. In addition to these, the program can also be used to characterise the helix start and end as well as other types of secondary structures.
Resumo:
The worldwide research in nanoelectronics is motivated by the fact that scaling of MOSFETs by conventional top down approach will not continue for ever due to fundamental limits imposed by physics even if it is delayed for some more years. The research community in this domain has largely become multidisciplinary trying to discover novel transistor structures built with novel materials so that semiconductor industry can continue to follow its projected roadmap. However, setting up and running a nanoelectronics facility for research is hugely expensive. Therefore it is a common model to setup a central networked facility that can be shared with large number of users across the research community. The Centres for Excellence in Nanoelectronics (CEN) at Indian Institute of Science, Bangalore (IISc) and Indian Institute of Technology, Bombay (IITB) are such central networked facilities setup with funding of about USD 20 million from the Department of Information Technology (DIT), Ministry of Communications and Information Technology (MCIT), Government of India, in 2005. Indian Nanoelectronics Users Program (INUP) is a missionary program not only to spread awareness and provide training in nanoelectronics but also to provide easy access to the latest facilities at CEN in IISc and at IITB for the wider nanoelectronics research community in India. This program, also funded by MCIT, aims to train researchers by conducting workshops, hands-on training programs, and providing access to CEN facilities. This is a unique program aiming to expedite nanoelectronics research in the country, as the funding for projects required for projects proposed by researchers from around India has prior financial approval from the government and requires only technical approval by the IISc/ IITB team. This paper discusses the objectives of INUP, gives brief descriptions of CEN facilities, the training programs conducted by INUP and list various research activities currently under way in the program.
Resumo:
With the emergence of large-volume and high-speed streaming data, the recent techniques for stream mining of CFIpsilas (closed frequent itemsets) will become inefficient. When concept drift occurs at a slow rate in high speed data streams, the rate of change of information across different sliding windows will be negligible. So, the user wonpsilat be devoid of change in information if we slide window by multiple transactions at a time. Therefore, we propose a novel approach for mining CFIpsilas cumulatively by making sliding width(ges1) over high speed data streams. However, it is nontrivial to mine CFIpsilas cumulatively over stream, because such growth may lead to the generation of exponential number of candidates for closure checking. In this study, we develop an efficient algorithm, stream-close, for mining CFIpsilas over stream by exploring some interesting properties. Our performance study reveals that stream-close achieves good scalability and has promising results.
Resumo:
Frequent episode discovery is a popular framework for mining data available as a long sequence of events. An episode is essentially a short ordered sequence of event types and the frequency of an episode is some suitable measure of how often the episode occurs in the data sequence. Recently,we proposed a new frequency measure for episodes based on the notion of non-overlapped occurrences of episodes in the event sequence, and showed that, such a definition, in addition to yielding computationally efficient algorithms, has some important theoretical properties in connecting frequent episode discovery with HMM learning. This paper presents some new algorithms for frequent episode discovery under this non-overlapped occurrences-based frequency definition. The algorithms presented here are better (by a factor of N, where N denotes the size of episodes being discovered) in terms of both time and space complexities when compared to existing methods for frequent episode discovery. We show through some simulation experiments, that our algorithms are very efficient. The new algorithms presented here have arguably the least possible orders of spaceand time complexities for the task of frequent episode discovery.
Resumo:
Energy consumption has become a major constraint in providing increased functionality for devices with small form factors. Dynamic voltage and frequency scaling has been identified as an effective approach for reducing the energy consumption of embedded systems. Earlier works on dynamic voltage scaling focused mainly on performing voltage scaling when the CPU is waiting for memory subsystem or concentrated chiefly on loop nests and/or subroutine calls having sufficient number of dynamic instructions. This paper concentrates on coarser program regions and for the first time uses program phase behavior for performing dynamic voltage scaling. Program phases are annotated at compile time with mode switch instructions. Further, we relate the Dynamic Voltage Scaling Problem to the Multiple Choice Knapsack Problem, and use well known heuristics to solve it efficiently. Also, we develop a simple integer linear program formulation for this problem. Experimental evaluation on a set of media applications reveal that our heuristic method obtains a 38% reduction in energy consumption on an average, with a performance degradation of 1% and upto 45% reduction in energy with a performance degradation of 5%. Further, the energy consumed by the heuristic solution is within 1% of the optimal solution obtained from the ILP approach.
Resumo:
Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discoverymethods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies.Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.
Resumo:
In this paper we consider the process of discovering frequent episodes in event sequences. The most computationally intensive part of this process is that of counting the frequencies of a set of candidate episodes. We present two new frequency counting algorithms for speeding up this part. These, referred to as non-overlapping and non-inteleaved frequency counts, are based on directly counting suitable subsets of the occurrences of an episode. Hence they are different from the frequency counts of Mannila et al [1], where they count the number of windows in which the episode occurs. Our new frequency counts offer a speed-up factor of 7 or more on real and synthetic datasets. We also show how the new frequency counts can be used when the events in episodes have time-durations as well.
Resumo:
Discovering patterns in temporal data is an important task in Data Mining. A successful method for this was proposed by Mannila et al. [1] in 1997. In their framework, mining for temporal patterns in a database of sequences of events is done by discovering the so called frequent episodes. These episodes characterize interesting collections of events occurring relatively close to each other in some partial order. However, in this framework(and in many others for finding patterns in event sequences), the ordering of events in an event sequence is the only allowed temporal information. But there are many applications where the events are not instantaneous; they have time durations. Interesting episodesthat we want to discover may need to contain information regarding event durations etc. In this paper we extend Mannila et al.’s framework to tackle such issues. In our generalized formulation, episodes are defined so that much more temporal information about events can be incorporated into the structure of an episode. This significantly enhances the expressive capability of the rules that can be discovered in the frequent episode framework. We also present algorithms for discovering such generalized frequent episodes.
Resumo:
Frequent episode discovery framework is a popular framework in temporal data mining with many applications. Over the years, many different notions of frequencies of episodes have been proposed along with different algorithms for episode discovery. In this paper, we present a unified view of all the apriori-based discovery methods for serial episodes under these different notions of frequencies. Specifically, we present a unified view of the various frequency counting algorithms. We propose a generic counting algorithm such that all current algorithms are special cases of it. This unified view allows one to gain insights into different frequencies, and we present quantitative relationships among different frequencies. Our unified view also helps in obtaining correctness proofs for various counting algorithms as we show here. It also aids in understanding and obtaining the anti-monotonicity properties satisfied by the various frequencies, the properties exploited by the candidate generation step of any apriori-based method. We also point out how our unified view of counting helps to consider generalization of the algorithm to count episodes with general partial orders.