49 resultados para Formation process

em Indian Institute of Science - Bangalore - Índia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pore forming toxins are being classified in the protein community based on their ability of forming pores in living cell membranes. Some initial study has apparently pointed out the crystallographic pathway rather can be viewed as a structural as well as morphological changes of proteins in terms of self assembly before and during the pore formation process in surfactant medium. Being a water soluble compound, it changes its conformation and originates some pre-pore complex, which later partially goes inside the cell membrane causing a pore. The physical mechanism for this whole process is still unknown. In this study we have tried to understand these types of biological processes from physical point of view by using supported lipid bilayer as a model system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A few simple three-atom thermoneutral radical exchange reactions (i.e. A + BC --> AB + C) are examined by ab initio SCF methods. Emphasis is laid on the detailed analysis of density matrices rather than on energetics. Results reveal that the sum of the bond orders of the breaking and forming bonds is not conserved to unity, due to development of free valence on the migrating atom 'B' in the transition state. Bond orders, free valence and spin densities on the atoms are calculated. The present analysis shows that the bond-cleavage process is always more advanced than the bond-formation process in the transition state. Further analysis shows a development of the negative spin density on the migrating atom 'B' in the transition state. The depletion of the alpha-spin density on the radical site "A" in the reactant during the reaction lags behind the growth of the alpha-spin density on the terminal atom "C" of the reactant bond, 'B-C' in the transition state. But all these processes are completed simultaneously at the end of the reaction. Hence, the reactions are asynchronous but kinetically concerted in most cases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nanosized hexagonal InN flower-like structures were fabricated by droplet epitaxy on GaN/Si(111) and GaN flower-like nanostructure fabricated directly on Si(111) substrate using radio frequency plasma-assisted molecular beam epitaxy. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study the crystallinity and morphology of the nanostructures. Moreover, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to investigate the chemical compositions and optical properties of nano-flowers, respectively. Activation energy of free exciton transitions in GaN nano-flowers was derived to be similar to 28.5 meV from the temperature dependent PL studies. The formation process of nano-flowers is investigated and a qualitative mechanism is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The reactivation kinetics of passivated boron accepters in hydrogenated silicon during zero bias annealing in the temperature range of 65-130 degrees C are reported, For large annealing times and high annealing temperatures, the reactivation process follows second-order kinetics and is rate limited by a thermally activated <(H)over tilde (2)> complex formation process, For short annealing times and low annealing temperatures, the reactivation rate is found to be larger than that due to <(H)over tilde (2)> complex formation alone. We conclude that the faster reactivation is caused by the diffusion of the liberated hydrogen atoms into the bulk as well as <(H)over tilde (2)> complex formation. The effective diffusion coefficient of hydrogen is measured and found to obey the Arrhenius relation with an activation energy (1.41 +/- 0.1) eV. (C) 1997 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The collapse of the primordial gas in the density regime similar to 10(8)-10(10) cm(-3) is controlled by the three-body H-2 formation process, in which the gas can cool faster than free-fall time-a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H-2 cooling, the heating due to H-2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the present work, solidification of a hyper-eutectic ammonium chloride solution in a bottom-cooled cavity (i.e. with stable thermal gradient) is numerically studied. A Rayleigh number based criterion is developed, which determines the conditions favorable for freckles formation. This criterion, when expressed in terms of physical properties and process parameters, yields the condition for plume formation as a function of concentration, liquid fraction, permeability, growth rate of a mushy layer and thermophysical properties. Subsequently, numerical simulations are performed for cases with initial and boundary conditions favoring freckle formation. The effects of parameters, such as cooling rate and initial concentration, on the formation and growth of freckles are investigated. It was found that a high cooling rate produced larger and more defined channels which are retained for a longer durations. Similarly, a lower initial concentration of solute resulted in fewer but more pronounced channels. The number and size of channels are also found to be related to the mushy zone thickness. The trends predicted with regard to the variation of number of channels with time under different process conditions are in accordance with the experimental observations reported in the literature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The existing models describing electrochemical phase formation involving both adsorption and a nucleation/growth process are modified. The limiting cases leading to the existing models are discussed. The characteristic features of the potentiostatic transients are presented. A generalization of the Avrami ansatz is given for two or more competitive irreversibly growing phases.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Formation of silicon carbide in the Acheson process was studied using a mass transfer model which has been developed in this study. The century old Acheson process is still used for the mass production of silicon carbide. A heat resistance furnace is used in the Acheson process which uses sand and petroleum coke as major raw materials.: It is a highly energy intensive process. No mass transfer model is available for this process. Therefore, a mass transfer model has been developed to study the mass transfer aspects of the process along with heat transfer. The reaction kinetics of silicon carbide formation has been taken from the literature. It has been shown that reaction kinetics has a reasonable influence on the process efficiency. The effect of various parameters on the process such as total gas pressure, presence of silicon carbide in the initial charge, etc. has been studied. A graphical user interface has also been developed for the Acheson process to make the computer code user friendly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The precipitation processes in dilute nitrogen alloys of titanium have been examined in detail by conventional transmission electron microscopy (CTEM) and high-resolution electron microscopy (HREM). The alloy Ti-2 at. pct N on quenching from its high-temperature beta phase field has been found to undergo early stages of decomposition. The supersaturated solid solution (alpha''-hcp) on decomposition gives rise to an intimately mixed, irresolvable product microstructure. The associated strong tweed contrast presents difficulties in understanding the characteristic features of the process. Therefore, HREM has been carried out with a view to getting a clear picture of the decomposition process. Studies on the quenched samples of the alloy suggest the formation of solute-rich zones of a few atom layers thick, randomly distributed throughout the matrix. On aging, these zones grow to a size beyond which the precipitate/matrix interfaces appear to become incoherent and the alpha' (tetragonal) product phase is seen distinctly. The structural details, the crystallography of the precipitation process, and the sequence of precipitation reaction in the system are illustrated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard free energies of formation of CaO derived from a variety of high-temperature equilibrium measurements made by seven groups of experimentalists are significantly different from those given in the standard compilations of thermodynamic data. Indirect support for the validity of the compiled data comes from new solid-state electrochemical measurements using single-crystal CaF2 and SrF2 as electrolytes. The change in free energy for the following reactions are obtained: CaO + MgF2 --> MgO + CaF2 Delta G degrees = -68,050 -2.47 T(+/-100) J mol(-1) SrO + CaF2 --> SrF2 + CaO Delta G degrees = -35,010 + 6.39 T (+/-80) J mol(-1) The standard free energy changes associated with cell reactions agree with data in standard compilations within +/- 4 kJ mol(-1). The results of this study do not support recent suggestions for a major revision in thermodynamic data for CaO.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Boron carbide is produced in a heat resistance furnace using boric oxide and petroleum coke as the raw materials. The product yield is very low. Heat transfer plays an important role in the formation of boron carbide. Temperature at the core reaches up to 2600 K. No experimental study is available in the open literature for this high temperature process particularly in terms of temperature measurement and heat transfer. Therefore, a laboratory scale hot model of the process has been setup to measure the temperatures in harsh conditions at different locations in the furnace using various temperature measurement devices such as pyrometer and various types of thermocouple. Particular attention was paid towards the accuracy and reliability of the measured data. The recorded data were analysed to understand the heat transfer process inside the reactor and the effect of it on the formation of boron carbide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drop formation at the conical tips of melting rods has been experimentally studied using the transparent wax-alcohol/acetonitrile system. The effects of cone angle, rod diameter, immersion depth, and bath temperature on the detached drop mass have been studied over a wide range, besides recording useful qualitative information based on visual observation. The experimental results suggest that the phenomenon of drop formation at the tip of melting rods has a close parallel with the drop formation at conical tips, at least on a qualitative basis. However, the results could not be quantified owing to difficulties in characterizing the physical properties of the system, despite efforts to minimize them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prediction of thermodynamic parameters of protein-protein and antigen-antibody complex formation from high resolution structural parameters has recently received much attention, since an understanding of the contributions of different fundamental processes like hydrophobic interactions, hydrogen bonding, salt bridge formation, solvent reorganization etc. to the overall thermodynamic parameters and their relations with the structural parameters would lead to rational drug design. Using the results of the dissolution of hydrocarbons and other model compounds the changes in heat capacity (DeltaCp), enthalpy (DeltaH) and entropy (DeltaS) have been empirically correlated with the polar and apolar surface areas buried during the process of protein folding/unfolding and protein-ligand complex formation. In this regard, the polar and apolar surfaces removed from the solvent in a protein-ligand complex have been calculated from the experimentally observed values of changes in heat capacity (DeltaCp) and enthalpy (DeltaH) for protein-ligand complexes for which accurate thermodynamic and high resolution structural data are available, and the results have been compared with the x-ray crystallographic observations. Analyses of the available results show poor correlation between the thermodynamic and structural parameters. Probable reasons for this discrepancy are mostly related with the reorganization of water accompanying the reaction which is indeed proven by the analyses of the energetics of the binding of the wheat germ agglutinin to oligosaccharides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study on the formation and growth of topological close packed (TCP) compounds is important to understand the performance of turbine blades in jet engine applications. These deleterious phases grow mainly by diffusion process in the superalloy substrate. Significant volume change was found because of growth of the p phase in Co-Mo system. Growth kinetics of this phase and different diffusion parameters, like interdiffusion, intrinsic and tracer diffusion coefficients are calculated. Further the activation energy, which provides an idea about the mechanism, is determined. Moreover, the interdiffusion coefficient in Co(Mo) solid solution and impurity diffusion coefficient of Mo in Co are determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of loop formation by linear polymer chains has been a topic of several theoretical and experimental studies. Formation of loops and their opening are key processes in many important biological processes. Loop formation in flexible chains has been extensively studied by many groups. However, in the more realistic case of semiflexible polymers, not much results are available. In a recent study [K. P. Santo and K. L. Sebastian, Phys. Rev. E 73, 031923 (2006)], we investigated opening dynamics of semiflexible loops in the short chain limit and presented results for opening rates as a function of the length of the chain. We presented an approximate model for a semiflexible polymer in the rod limit based on a semiclassical expansion of the bending energy of the chain. The model provided an easy way to describe the dynamics. In this paper, using this model, we investigate the reverse process, i.e., the loop formation dynamics of a semiflexible polymer chain by describing the process as a diffusion-controlled reaction. We make use of the ``closure approximation'' of Wilemski and Fixman [G. Wilemski and M. Fixman, J. Chem. Phys. 60, 878 (1974)], in which a sink function is used to represent the reaction. We perform a detailed multidimensional analysis of the problem and calculate closing times for a semiflexible chain. We show that for short chains, the loop formation time tau decreases with the contour length of the polymer. But for longer chains, it increases with length obeying a power law and so it has a minimum at an intermediate length. In terms of dimensionless variables, the closing time is found to be given by tau similar to L-n exp(const/L), where n=4.5-6. The minimum loop formation time occurs at a length L-m of about 2.2-2.4. These are, indeed, the results that are physically expected, but a multidimensional analysis leading to these results does not seem to exist in the literature so far.