14 resultados para Forecast accuracy
em Indian Institute of Science - Bangalore - Índia
Resumo:
In order to meet the ever growing demand for the prediction of oceanographic parametres in the Indian Ocean for a variety of applications, the Indian National Centre for Ocean Information Services (INCOIS) has recently set-up an operational ocean forecast system, viz. the Indian Ocean Forecast System (INDOFOS). This fully automated system, based on a state-of-the-art ocean general circulation model issues six-hourly forecasts of the sea-surface temperature, surface currents and depths of the mixed layer and the thermocline up to five-days of lead time. A brief account of INDOFOS and a statistical validation of the forecasts of these parametres using in situ and remote sensing data are presented in this article. The accuracy of the sea-surface temperature forecasts by the system is high in the Bay of Bengal and the Arabian Sea, whereas it is moderate in the equatorial Indian Ocean. On the other hand, the accuracy of the depth of the thermocline and the isothermal layers and surface current forecasts are higher near the equatorial region, while it is relatively lower in the Bay of Bengal.
Resumo:
Five different shaped weirs were designed and pertinent data for their use are given. One of these weir shapes had the least “sharp edge” at the junction of the base weir and “complementary weir.” Two other types of weirs had equal slopes at the junction of the base weir and complementary weir. Another shape, for which neither the indication accuracy was constant nor the slope was equal at the junction of the base weir and complementary weir, was also tested. The results of the four weir shapes hydraulically tested give consistent values for the coefficient of discharge varying between 0.625 to 0.631. The indication accuracies of all the previously designed linear proportional weirs (includig Sutro weir) are neither constant nor unity, as is believed.
Resumo:
Many previous studies regarding the estimation of mechanical properties of single walled carbon nanotubes (SWCNTs) report that, the modulus of SWCNTs is chirality, length and diameter dependent. Here, this dependence is quantitatively described in terms of high accuracy curve fit equations. These equations allow us to estimate the modulus of long SWCNTs (lengths of about 100-120 nm) if the value at the prescribed low lengths (lengths of about 5-10 nm) is known. This is supposed to save huge computational time and expense. Also, based on the observed length dependent behavior of SWCNT initial modulus, we predict that, SWCNT mechanical properties such as Young's modulus, secant modulus, maximum tensile strength, failure strength, maximum tensile strain and failure strain might also exhibit the length dependent behavior along with chirality and length dependence. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This paper is concerned with the modifications of the Extended Bellmouth Weir (EBM weir) earlier designed by Keshava Murthy. It is shown that by providing inclined sides (equivalent to providing an inward-trapezoidal weir) over a sector of a circle of radius R, separated by a distance 2t, and depth d, the measurable range of EBM can be considerably enhanced (over 375%). Simultaneously, the other parameters of the weir are optimized such that the reference plane of the weir coincides with its crest making it a constant-accuracy linear weir. Discharge through the aforementioned weir is proportional to the depths of flow measured above the crest of the weir for all heads in the range of 0.5R less-than-or-equal-to h less-than-or-equal-to 7.9R, within a maximum deviation of +/-1% from the theoretical discharge. Experiments with two typical weirs show excellent agreement with the theory by giving a constant-average coefficient of discharge of 0.619
Resumo:
The widely used Bayesian classifier is based on the assumption of equal prior probabilities for all the classes. However, inclusion of equal prior probabilities may not guarantee high classification accuracy for the individual classes. Here, we propose a novel technique-Hybrid Bayesian Classifier (HBC)-where the class prior probabilities are determined by unmixing a supplemental low spatial-high spectral resolution multispectral (MS) data that are assigned to every pixel in a high spatial-low spectral resolution MS data in Bayesian classification. This is demonstrated with two separate experiments-first, class abundances are estimated per pixel by unmixing Moderate Resolution Imaging Spectroradiometer data to be used as prior probabilities, while posterior probabilities are determined from the training data obtained from ground. These have been used for classifying the Indian Remote Sensing Satellite LISS-III MS data through Bayesian classifier. In the second experiment, abundances obtained by unmixing Landsat Enhanced Thematic Mapper Plus are used as priors, and posterior probabilities are determined from the ground data to classify IKONOS MS images through Bayesian classifier. The results indicated that HBC systematically exploited the information from two image sources, improving the overall accuracy of LISS-III MS classification by 6% and IKONOS MS classification by 9%. Inclusion of prior probabilities increased the average producer's and user's accuracies by 5.5% and 6.5% in case of LISS-III MS with six classes and 12.5% and 5.4% in IKONOS MS for five classes considered.
Resumo:
This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.
Resumo:
Ranking problems have become increasingly important in machine learning and data mining in recent years, with applications ranging from information retrieval and recommender systems to computational biology and drug discovery. In this paper, we describe a new ranking algorithm that directly maximizes the number of relevant objects retrieved at the absolute top of the list. The algorithm is a support vector style algorithm, but due to the different objective, it no longer leads to a quadratic programming problem. Instead, the dual optimization problem involves l1, ∞ constraints; we solve this dual problem using the recent l1, ∞ projection method of Quattoni et al (2009). Our algorithm can be viewed as an l∞-norm extreme of the lp-norm based algorithm of Rudin (2009) (albeit in a support vector setting rather than a boosting setting); thus we refer to the algorithm as the ‘Infinite Push’. Experiments on real-world data sets confirm the algorithm’s focus on accuracy at the absolute top of the list.
Resumo:
The primary objective of the present study is to show that for the most common configuration of an impactor system, the accelerometer cannot exactly reproduce the dynamic response of a specimen subjected to impact loading. An equivalent Lumped Parameter Model (LPM) of the given impactor set-up has been formulated for assessing the accuracy of an accelerometer mounted in a drop-weight impactor set-up for an axially loaded specimen. A specimen under the impact loading is represented by a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. Specimens made of steel, aluminium and fibre-reinforced composite (FRC) are used in the present study. Assuming the force-displacement response obtained in an actual impact test to be the true behaviour of the test specimen, a suitable numerical approach has been used to solve the governing non-linear differential equations of a three degrees-of-freedom (DOF) system in a piece-wise linear manner. The numerical solution of the governing differential equations following an explicit time integration scheme yields an excellent reproduction of the mechanical behaviour of the specimen, consequently confirming the accuracy of the numerical approach. However, the spring representing the accelerometer predicts a response that qualitatively matches the assumed force-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
Study of Oceans dynamics and forecast is crucial as it influences the regional climate and other marine activities. Forecasting oceanographic states like sea surface currents, Sea surface temperature (SST) and mixed layer depth at different time scales is extremely important for these activities. These forecasts are generated by various ocean general circulation models (OGCM). One such model is the Regional Ocean Modelling System (ROMS). Though ROMS can simulate several features of ocean, it cannot reproduce the thermocline of the ocean properly. Solution to this problem is to incorporates data assimilation (DA) in the model. DA system using Ensemble Transform Kalman Filter (ETKF) has been developed for ROMS model to improve the accuracy of the model forecast. To assimilate data temperature and salinity from ARGO data has been used as observation. Assimilated temperature and salinity without localization shows oscillations compared to the model run without assimilation for India Ocean. Same was also found for u and v-velocity fields. With localization we found that the state variables are diverging within the localization scale.
Resumo:
In this work, first a Fortran code is developed for three dimensional linear elastostatics using constant boundary elements; the code is based on a MATLAB code developed by the author earlier. Next, the code is parallelized using BLACS, MPI, and ScaLAPACK. Later, the parallelized code is used to demonstrate the usefulness of the Boundary Element Method (BEM) as applied to the realtime computational simulation of biological organs, while focusing on the speed and accuracy offered by BEM. A computer cluster is used in this part of the work. The commercial software package ANSYS is used to obtain the `exact' solution against which the solution from BEM is compared; analytical solutions, wherever available, are also used to establish the accuracy of BEM. A pig liver is the biological organ considered. Next, instead of the computer cluster, a Graphics Processing Unit (GPU) is used as the parallel hardware. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature. Also, a serial MATLAB code, and both serial and parallel versions of a Fortran code, which can solve three dimensional (3D) linear elastostatic problems using constant boundary elements, are provided as supplementary files that can be freely downloaded.
Resumo:
In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated, with specific reference to the speed and the accuracy offered by BEM. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of the GPU, a computer cluster is used. A pig liver is the biological organ considered. Results indicate that BEM is an interesting choice for the simulation of biological organs. Although the use of BEM for the simulation of biological organs is not new, the results presented in the present study are not found elsewhere in the literature.
Resumo:
The objective of the current study is to evaluate the fidelity of load cell reading during impact testing in a drop-weight impactor using lumped parameter modeling. For the most common configuration of a moving impactor-load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. A 3-DOF (degrees-of-freedom) LPM (lumped parameter model) is considered to represent a given impact testing set-up. In this model, a test specimen in the form of a steel hat section similar to front rails of cars is represented by a nonlinear spring while the load cell is assumed to behave in a linear manner due to its high stiffness. Assuming a given load-displacement response obtained in an actual test as the true behavior of the specimen, the numerical solution of the governing differential equations following an implicit time integration scheme is shown to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the load cell, however,predicts a response that qualitatively matches the assumed load-displacement response of the test specimen with a perceptibly lower magnitude of load.
Resumo:
The basic objective in the present study is to show that for the most common configuration of an impactor system, an accelerometer cannot exactly reproduce the dynamic response of a specimen subject to impact loading. Assessment of the accelerometer mounted in a drop-weight impactor setup for an axially loaded specimen is done with the aid of an equivalent lumped parameter model (LPM) of the setup. A steel hat-type specimen under the impact loading is represented as a non-linear spring of varying stiffness, while the accelerometer is assumed to behave in a linear manner due to its high stiffness. A suitable numerical approach has been used to solve the non-linear governing equations for a 3 degrees-of-freedom system in a piece-wise linear manner. The numerical solution following an explicit time integration scheme is used to yield an excellent reproduction of the mechanical behavior of the specimen thereby confirming the accuracy of the numerical approach. The spring representing the accelerometer, however, predicts a response that qualitatively matches the assumed load–displacement response of the test specimen with a perceptibly lower magnitude of load.