116 resultados para Flow Through Capillary Tubes
em Indian Institute of Science - Bangalore - Índia
Resumo:
Experiments conducted in channels/tubes with height/diameter less than 1 mm with soft walls made of polymer gels show that the transition Reynolds number could be significantly lower than the corresponding value of 1200 for a rigid channel or 2100 for a rigid tube. Experiments conducted with very viscous fluids show that there could be an instability even at zero Reynolds number provided the surface is sufficiently soft. Linear stability studies show that the transition Reynolds number is linearly proportional to the wall shear modulus in the low Reynolds number limit, and it increases as the 1/2 and 3/4 power of the shear modulus for the `inviscid' and `wall mode' instabilities at high Reynolds number. While the inviscid instability is similar to that in the flow in a rigid channel, the mechanisms of the viscous and wall mode instabilities are qualitatively different. These involve the transfer of energy from the mean flow to the fluctuations due to the shear work done at the interface. The experimental results for the viscous instability mechanism are in quantitative agreement with theoretical predictions. At high Reynolds number, the instability mechanism has characteristics similar to the wall mode instability. The experimental transition Reynolds number is smaller, by a factor of about 10, than the theoretical prediction for the parabolic flow through rigid tubes and channels. However, if the modification in the tube shape due to the pressure gradient, and the consequent modification in the velocity profile and pressure gradient, are incorporated, there is quantitative agreement between theoretical predictions and experimental results. The transition has important practical consequences, since there is a significant enhancement of mixing after transition.
Resumo:
A flow-induced instability in a tube with flexible walls is studied experimentally. Tubes of diameter 0.8 and 1.2 mm are cast in polydimethylsiloxane (PDMS) polymer gels, and the catalyst concentration in these gels is varied to obtain shear modulus in the range 17–550 kPa. A pressure drop between the inlet and outlet of the tube is used to drive fluid flow, and the friction factor $f$ is measured as a function of the Reynolds number $Re$. From these measurements, it is found that the laminar flow becomes unstable, and there is a transition to a more complicated flow profile, for Reynolds numbers as low as 500 for the softest gels used here. The nature of the $f$–$Re$ curves is also qualitatively different from that in the flow past rigid tubes; in contrast to the discontinuous increase in the friction factor at transition in a rigid tube, it is found that there is a continuous increase in the friction factor from the laminar value of $16\ensuremath{/} Re$ in a flexible tube. The onset of transition is also detected by a dye-stream method, where a stream of dye is injected into the centre of the tube. It is found that there is a continuous increase of the amplitude of perturbations at the onset of transition in a flexible tube, in contrast to the abrupt disruption of the dye stream at transition in a rigid tube. There are oscillations in the wall of the tube at the onset of transition, which is detected from the laser scattering off the walls of the tube. This indicates that the coupling between the fluid stresses and the elastic stresses in the wall results in an instability of the laminar flow.
Resumo:
Experimentally measured average velocities through plateau borders of stationary cellular foam, when compared with those calculated with the assumption of rigid Plateau Border walls, show that the assumption of rigid walls severely underestimates the velocities. An analysis of the situation wherein plateau border walls have velocities, as decided by the surface viscosity of the system, is presented here. The plateau border is idealized as a pipe of equilateral triangular cross-section with vertices of the triangle having zero velocity. The pertinent form of Navier-Stoke's equations with inhomogeneous boundary conditions and its solution through a procedure of successive approximations is presented in dimensionless form. The solution reduces to the known solution of slow steady flow through a triangular pipe, when surface viscosity is infinite. Results indicate that the assumption of rigid plateau border walls is valid only when value of the inverse of dimensionless surface viscosity is less than 0.044. Beyond that the assumption severely underestimates the flow and the effect of nonrigidity of the wall must be considered.
Resumo:
We consider a multicommodity flow problem on a complete graph whose edges have random, independent, and identically distributed capacities. We show that, as the number of nodes tends to infinity, the maximumutility, given by the average of a concave function of each commodity How, has an almost-sure limit. Furthermore, the asymptotically optimal flow uses only direct and two-hop paths, and can be obtained in a distributed manner.
Resumo:
The paper deals with the flow and heat-transfer problem of a steady axisymmetric laminar incompressible boundary layer swirling flow of a fluid through a conical hydrocyclone. The implicit finitedifference scheme is used to solve the partial differential equations governing the flow. The effect of swirl is found to be more pronounced on the longitudinal skin friction than on the tangential skin friction and heat transfer. The skin friction and heat transfer increase with swirl or with longitudinal distance. Swirl also gives rise to velocity overshoot in the longitudinal velocity profiles and the magnitude of the velocity overshoot increases as the swirl parameter increases. The results are found to be in good agreement with those of the local nonsimilarity and momentum integral methods but they differ appreciably from those of the local similarity method except for the longitudinal skin friction which is fairly in good agreement with that of the local similarity method.Die Arbeit beschäftigt sich mit der Strömung und dem Wärmeübergang in einem konischen Zyklon unter der Voraussetzung stationärer, achsensymmetrischer, laminarer, inkompressibler Grenzschichtströmung. Ein implizites Differenzenverfahren wird benutzt, um die partiellen Differentialgleichungen zu lösen. Der Einfluß des Dralls ist besonders ausgeprägt auf die longitudinale Komponente der Oberflächenreibung, weniger dagegen bei der tangentialen Komponente und beim Wärmeübergang. Die Oberflächenreibung und der Wärmeübergang nehmen zu mit dem Drall, sowie mit dem longitudinalen Abstand. Der Drall erzeugt ein Überschießen der Geschwindigkeit in der longitudinalen Abstand. Der Drall erzeugt ein Überschießen der Geschwindigkeit in der Längsrichtung. Die Größe des Überschusses nimmt mit wachsendem Drallparameter zu. Die Resultate stimmen gut mit den Ergebnissen der Theorie der lokalen Nichtähnlichkeit und der Impulsintegralmethode überein. Dagegen weichen sie mit Ausnahme der longitudinalen Komponente der Oberflächenreibung beträchtlich von den Resultaten der Theorie der lokalen Ähnlichkeit ab.
Resumo:
Some errors have been observed in the analytical expression for the resistance to flow (lambda R), and in the computation of shear stress distribution (tau R) in the analysis of Prawal Sinha and Chandan Singh (1). These errors have been rectified in the present analysis. Also, better values have been suggested for the couple stress parameter alpha for getting better results for lambda R and tau R.
Resumo:
Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.
Resumo:
Computations have been carried out for simulating supersonic flow through a set of converging-diverging nozzles with their expanding jets forming a laser cavity and flow patterns through diffusers, past the cavity. A thorough numerical investigation with 3-D RANS code is carried out to capture the flow distribution which comprises of shock patterns and multiple supersonic jet interactions. The analysis of pressure recovery characteristics during the flow through the diffusers is an important parameter of the simulation and is critical for the performance of the laser device. The results of the computation have shown a close agreement with the experimentally measured parameters as well as other established results indicating that the flow analysis done is found to be satisfactory.
Resumo:
A two-dimensional finite difference model, which solves mixed type of Richards' equation, whose non-linearity is dealt with modified Picard's iteration and strongly implicit procedure to solve the resulting equations, is presented. Modeling of seepage flow through heterogeneous soils, which is common in the field is addressed in the present study. The present model can be applied to both unsaturated and saturated soils and can handle very dry initial condition and steep wetting fronts. The model is validated by comparing experimental results reported in the literature. Newness of this two dimensional model is its application on layered soils with transient seepage face development, which has not been reported in the literature. Application of the two dimensional model for studying unconfined drainage due to sudden drop of water table at seepage face in layered soils is demonstrated. In the present work different sizes of rectangular flow domain with different types of layering are chosen. Sensitivity of seepage height due to problem dimension of layered system is studied. The effect of aspect ratio on seepage face development in case of the flow through layered soil media is demonstrated. The model is also applied to random heterogeneous soils in which the randomness of the model parameters is generated using the turning band technique. The results are discussed in terms of phreatic surface and seepage height development and also flux across the seepage face. Such accurate modeling of seepage face development and quantification of flux moving across the seepage face becomes important while modeling transport problems in variably saturated media.
Resumo:
Effective air flow distribution through perforated tiles is required to efficiently cool servers in a raised floor data center. We present detailed computational fluid dynamics (CFD) modeling of air flow through a perforated tile and its entrance to the adjacent server rack. The realistic geometrical details of the perforated tile, as well as of the rack are included in the model. Generally, models for air flow through perforated tiles specify a step pressure loss across the tile surface, or porous jump model based on the tile porosity. An improvement to this includes a momentum source specification above the tile to simulate the acceleration of the air flow through the pores, or body force model. In both of these models, geometrical details of tile such as pore locations and shapes are not included. More details increase the grid size as well as the computational time. However, the grid refinement can be controlled to achieve balance between the accuracy and computational time. We compared the results from CFD using geometrical resolution with the porous jump and body force model solution as well as with the measured flow field using particle image velocimetry (PIV) experiments. We observe that including tile geometrical details gives better results as compared to elimination of tile geometrical details and specifying physical models across and above the tile surface. A modification to the body force model is also suggested and improved results were achieved.
Resumo:
The potential of textured hydrophobic surfaces to provide substantial drag reduction has been attributed to the presence of air bubbles trapped on the surface cavities. In this paper, we present results on water flow past a textured hydrophobic surface, while systematically varying the absolute pressure close to the surface. Trapped air bubbles on the surface are directly visualized, along with simultaneous pressure drop measurements across the surface in a microchannel configuration. We find that varying the absolute pressure within the channel greatly influences the trapped air bubble behavior, causing a consequent effect on the pressure drop (drag). When the absolute pressure within the channel is maintained below atmospheric pressure, we find that the air bubbles grow in size, merge and eventually detach from the surface. This growth and subsequent merging of the air bubbles leads to a substantial increase in the pressure drop. On the other hand, a pressure above the atmospheric pressure within the channel leads to gradual shrinkage and eventual disappearance of trapped air bubbles. We find that in this case, air bubbles do cause reduction in the pressure drop with the minimum pressure drop (or maximum drag reduction) occurring when the bubbles are flush with the surface. These results show that the trapped air bubble dynamics and the pressure drop across a textured hydrophobic microchannel are very significantly dependent on the absolute pressure within the channel. The results obtained hold important implications toward achieving sustained drag reduction in microfluidic applications.
Resumo:
Using coherent light interrogating a turbid object perturbed by a focused ultrasound (US) beam, we demonstrate localized measurement of dynamics in the focal region, termed the region-of-interest (ROI), from the decay of the modulation in intensity autocorrelation of light. When the ROI contains a pipe flow, the decay is shown to be sensitive to the average flow velocity from which the mean-squared displacement (MSD) of the scattering centers in the flow can be estimated. While the MSD estimated is seen to be an order of magnitude higher than that obtainable through the usual diffusing wave spectroscopy (DWS) without the US, it is seen to be more accurate as verified by the volume flow estimated from it. It is further observed that, whereas the MSD from the localized measurement grows with time as tau(alpha) with alpha approximate to 1.65, without using the US, a is seen to be much less. Moreover, with the local measurement, this super-diffusive nature of the pipe flow is seen to persist longer, i.e., over a wider range of initial tau, than with the unassisted DWS. The reason for the super-diffusivity of flow, i.e., alpha < 2, in the ROI is the presence of a fluctuating (thermodynamically nonequilibrium) component in the dynamics induced by the US forcing. Beyond this initial range, both methods measure MSDs that rise linearly with time, indicating that ballistic and near-ballistic photons hardly capture anything beyond the background Brownian motion. (C) 2015 Optical Society of America
Resumo:
Steady laminar flow of a non-Newtonian fluid based on couple stress fluid theory, through narrow tubes of varying cross-sections has been studied theoretically. Asymptotic solutions are obtained for the basic equations and the expressions for the velocity field and the wall shear stress are derived for a general cross-section. Computation and discussions are carried out for the geometries which occur in the context of physiological flows or in particular blood flows. The tapered tubes and constricted tubes are of special importance. It is observed that increase in certain parameters results in erratic flow behaviour proximal to the constricted areas which is further enhanced by the increase in the geometric parameters. This elucidates the implications of the flow in the development of vascular lesions.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube