229 resultados para Flat space
em Indian Institute of Science - Bangalore - Índia
Resumo:
We show that interpreting the inverse AdS(3) radius 1/l as a Grassmann variable results in a formal map from gravity in AdS(3) to gravity in flat space. The underlying reason for this is the fact that ISO(2, 1) is the Inonu-Wigner contraction of SO(2, 2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS(3) maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS3 case. Our results straightforwardly generalize to the higher spin case: the recently constructed flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We conclude with a discussion of singularity resolution in the BMS gauge as an application.
Resumo:
The authors study the trajectories of charged particles in Ernst's space-time representing a static black hole immersed in a magnetic field. They find bound orbits always exist for realistic magnetic field strengths. A similar investigation is carried out for the case of Melvin's magnetic universe and for a corresponding test field superposed on a flat space-time.
Resumo:
We compute the leading corrections to the Bekenstein-Hawking entropy of the Flat Space Cosmological (FSC) solutions in 3D flat spacetimes, which are the flat analogues of the BTZ black holes in AdS(3). The analysis is done by a computation of density of states in the dual 2D Galilean Conformal Field Theory and the answer obtained by this matches with the limiting value of the expected result for the BTZ inner horizon entropy as well as what is expected for a generic thermodynamic system. Along the way, we also develop other aspects of holography of 3D flat spacetimes.
Resumo:
A study of strong gravity field coupled to the Yukawa field is carried out for a conformally flat space-time. A quantitative relation between the strong interaction coupling constantg 2/hstrokc and the strong gravity constants (Lambda f~1028 cm–2,G f ~6.6×1030 C.G.S. units) is obtained givingg 2/hstroksim17, which is of the right order of magnitude. This justifies the contention that strong gravity is relevant for elementary particles (e.g., hadrons).
Resumo:
By making use of the fact that the de-Sitter metric corresponds to a hyperquadric in a five-dimensional flat space, it is shown that the three Robertson-Walker metrics for empty spacetime and positive cosmological constant, corresponding to 3-space of positive, negative and zero curvative, are geometrically equivalent. The 3-spaces correspond to intersections of the hyperquadric by hyperplanes, and the time-like geodesics perpendicular to them correspond to intersections by planes, in all three cases.
Resumo:
The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.
Resumo:
We consider extremal limits of the recently constructed ``subtracted geometry''. We show that extremality makes the horizon attractive against scalar perturbations, but radial evolution of such perturbations changes the asymptotics: from a conical-box to flat Minkowski. Thus these are black holes that retain their near-horizon geometry under perturbations that drastically change their asymptotics. We also show that this extremal subtracted solution (''subttractor'') can arise as a boundary of the basin of attraction for flat space attractors. We demonstrate this by using a fairly minimal action (that has connections with STU model) where the equations of motion are integrable and we are able to find analytic solutions that capture the flow from the horizon to the asymptotic region. The subttractor is a boundary between two qualitatively different flows. We expect that these results have generalizations for other theories with charged dilatonic black holes.
Resumo:
Resolution of cosmological singularities is an important problem in any full theory of quantum gravity. The Milne orbifold is a cosmology with a big-bang/big-crunch singularity, but being a quotient of flat space it holds potential for resolution in string theory. It is known, however, that some perturbative string amplitudes diverge in the Milne geometry. Here we show that flat space higher spin theories can effect a simple resolution of the Milne singularity when one embeds the latter in 2 + 1 dimensions. We explain how to reconcile this with the expectation that non-perturbative string effects are required for resolving Milne. Along the way, we introduce a Grassmann realization of the inonfi-Wigner contraction to export much of the AdS technology to -our flat space computation. (C) 2014 The Authors. Published by Elsevier BAT.
Resumo:
We study the null orbifold singularity in 2+1 d flat space higher spin theory as well as string theory. Using the Chern-Simons formulation of 2+1 d Einstein gravity, we first observe that despite the singular nature of this geometry, the eigenvalues of its Chern-Simons holonomy are trivial. Next, we construct a resolution of the singularity in higher spin theory: a Kundt spacetime with vanishing scalar curvature invariants. We also point out that the UV divergences previously observed in the 2-to-2 tachyon tree level string amplitude on the null orbifold do not arise in the at alpha' -> infinity limit. We find all the divergences of the amplitude and demonstrate that the ones remaining in the tensionless limit are physical IR-type divergences. We conclude with a discussion on the meaning and limitations of higher spin (cosmological) singularity resolution and its potential connection to string theory.
Resumo:
We give a review on (a) elements of (2 + 1)-dimensional gravity, (b) some aspects of its relation to Chern-Simons theory, (c) its generalization to couple higher spins, and (d) cosmic singularity resolution as an application in the context of flat space higher spin theory. A knowledge of the Einstein-Hilbert action, classical non-Abelian gauge theory and some (negotiable amount of) maturity are the only pre-requisites.
Resumo:
A geometric invariant is associated to the parabolic moduli space on a marked surface and is related to the symplectic structure of the moduli space.
Resumo:
The free convection problem with nonuniform gravity finds applications in several fields. For example, centrifugal gravity fieldsarisein many rotating machinery applications. A gravity field is also created artificially in an orbital space station by rotation. The effect of nonuniform gravity due to the rotation of isothermal or nonisothermal plates has been studied by several authors [l-5] using various mathematical techniques.
Resumo:
In this paper we associate a new geometric invariant to the space of fiat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it tcr the symplectic structure on the space Hom(pi(1)(M), G)/G consisting of representations of the fundamental group pi(1)(M) Of M into G module the conjugate action of G on representations.
Resumo:
A geometric invariant is associated to the space of fiat connections on a G-bundle over a compact Riemann surface and is related to the energy of harmonic functions.
Resumo:
The average time tau(r) for one end of a long, self-avoiding polymer to interact for the first time with a flat penetrable surface to which it is attached at the other end is shown here to scale essentially as the square of the chain's contour length N. This result is obtained within the framework of the Wilemski-Fixman approximation to diffusion-limited reactions, in which the reaction time is expressed as a time correlation function of a ``sink'' term. In the present work, this sink-sink correlation function is calculated using perturbation expansions in the excluded volume and the polymer-surface interactions, with renormalization group methods being used to resum the expansion into a power law form. The quadratic dependence of tau(r) on N mirrors the behavior of the average time tau(c) of a free random walk to cyclize, but contrasts with the cyclization time of a free self-avoiding walk (SAW), for which tau(r) similar to N-2.2. A simulation study by Cheng and Makarov J. Phys. Chem. B 114, 3321 (2010)] of the chain-end reaction time of an SAW on a flat impenetrable surface leads to the same N-2.2 behavior, which is surprising given the reduced conformational space a tethered polymer has to explore in order to react. (C) 2014 AIP Publishing LLC.