46 resultados para Filtro Kalman
em Indian Institute of Science - Bangalore - Índia
Resumo:
We propose three variants of the extended Kalman filter (EKF) especially suited for parameter estimations in mechanical oscillators under Gaussian white noises. These filters are based on three versions of explicit and derivative-free local linearizations (DLL) of the non-linear drift terms in the governing stochastic differential equations (SDE-s). Besides a basic linearization of the non-linear drift functions via one-term replacements, linearizations using replacements through explicit Euler and Newmark expansions are also attempted in order to ensure higher closeness of true solutions with the linearized ones. Thus, unlike the conventional EKF, the proposed filters do not need computing derivatives (tangent matrices) at any stage. The measurements are synthetically generated by corrupting with noise the numerical solutions of the SDE-s through implicit versions of these linearizations. In order to demonstrate the effectiveness and accuracy of the proposed methods vis-à-vis the conventional EKF, numerical illustrations are provided for a few single degree-of-freedom (DOF) oscillators and a three-DOF shear frame with constant parameters.
Resumo:
The problem of identification of stiffness, mass and damping properties of linear structural systems, based on multiple sets of measurement data originating from static and dynamic tests is considered. A strategy, within the framework of Kalman filter based dynamic state estimation, is proposed to tackle this problem. The static tests consists of measurement of response of the structure to slowly moving loads, and to static loads whose magnitude are varied incrementally; the dynamic tests involve measurement of a few elements of the frequency response function (FRF) matrix. These measurements are taken to be contaminated by additive Gaussian noise. An artificial independent variable τ, that simultaneously parameterizes the point of application of the moving load, the magnitude of the incrementally varied static load and the driving frequency in the FRFs, is introduced. The state vector is taken to consist of system parameters to be identified. The fact that these parameters are independent of the variable τ is taken to constitute the set of ‘process’ equations. The measurement equations are derived based on the mechanics of the problem and, quantities, such as displacements and/or strains, are taken to be measured. A recursive algorithm that employs a linearization strategy based on Neumann’s expansion of structural static and dynamic stiffness matrices, and, which provides posterior estimates of the mean and covariance of the unknown system parameters, is developed. The satisfactory performance of the proposed approach is illustrated by considering the problem of the identification of the dynamic properties of an inhomogeneous beam and the axial rigidities of members of a truss structure.
Resumo:
The problem of reconstruction of a refractive-index distribution (RID) in optical refraction tomography (ORT) with optical path-length difference (OPD) data is solved using two adaptive-estimation-based extended-Kalman-filter (EKF) approaches. First, a basic single-resolution EKF (SR-EKF) is applied to a state variable model describing the tomographic process, to estimate the RID of an optically transparent refracting object from noisy OPD data. The initialization of the biases and covariances corresponding to the state and measurement noise is discussed. The state and measurement noise biases and covariances are adaptively estimated. An EKF is then applied to the wavelet-transformed state variable model to yield a wavelet-based multiresolution EKF (MR-EKF) solution approach. To numerically validate the adaptive EKF approaches, we evaluate them with benchmark studies of standard stationary cases, where comparative results with commonly used efficient deterministic approaches can be obtained. Detailed reconstruction studies for the SR-EKF and two versions of the MR-EKF (with Haar and Daubechies-4 wavelets) compare well with those obtained from a typically used variant of the (deterministic) algebraic reconstruction technique, the average correction per projection method, thus establishing the capability of the EKF for ORT. To the best of our knowledge, the present work contains unique reconstruction studies encompassing the use of EKF for ORT in single-resolution and multiresolution formulations, and also in the use of adaptive estimation of the EKF's noise covariances. (C) 2010 Optical Society of America
Resumo:
This paper proposes a derivative-free two-stage extended Kalman filter (2-EKF) especially suited for state and parameter identification of mechanical oscillators under Gaussian white noise. Two sources of modeling uncertainties are considered: (1) errors in linearization, and (2) an inadequate system model. The state vector is presently composed of the original dynamical/parameter states plus the so-called bias states accounting for the unmodeled dynamics. An extended Kalman estimation concept is applied within a framework predicated on explicit and derivative-free local linearizations (DLL) of nonlinear drift terms in the governing stochastic differential equations (SDEs). The original and bias states are estimated by two separate filters; the bias filter improves the estimates of the original states. Measurements are artificially generated by corrupting the numerical solutions of the SDEs with noise through an implicit form of a higher-order linearization. Numerical illustrations are provided for a few single- and multidegree-of-freedom nonlinear oscillators, demonstrating the remarkable promise that 2-EKF holds over its more conventional EKF-based counterparts. DOI: 10.1061/(ASCE)EM.1943-7889.0000255. (C) 2011 American Society of Civil Engineers.
Resumo:
This paper proposes a method of short term load forecasting with limited data, applicable even at 11 kV substation levels where total power demand is relatively low and somewhat random and weather data are usually not available as in most developing countries. Kalman filtering technique has been modified and used to forecast daily and hourly load. Planning generation and interstate energy exchange schedule at load dispatch centre and decentralized Demand Side Management at substation level are intended to be carried out with the help of this short term load forecasting technique especially to achieve peak power control without enforcing load-shedding.
Resumo:
Study of Oceans dynamics and forecast is crucial as it influences the regional climate and other marine activities. Forecasting oceanographic states like sea surface currents, Sea surface temperature (SST) and mixed layer depth at different time scales is extremely important for these activities. These forecasts are generated by various ocean general circulation models (OGCM). One such model is the Regional Ocean Modelling System (ROMS). Though ROMS can simulate several features of ocean, it cannot reproduce the thermocline of the ocean properly. Solution to this problem is to incorporates data assimilation (DA) in the model. DA system using Ensemble Transform Kalman Filter (ETKF) has been developed for ROMS model to improve the accuracy of the model forecast. To assimilate data temperature and salinity from ARGO data has been used as observation. Assimilated temperature and salinity without localization shows oscillations compared to the model run without assimilation for India Ocean. Same was also found for u and v-velocity fields. With localization we found that the state variables are diverging within the localization scale.
Resumo:
Neural data are inevitably contaminated by noise. When such noisy data are subjected to statistical analysis, misleading conclusions can be reached. Here we attempt to address this problem by applying a state-space smoothing method, based on the combined use of the Kalman filter theory and the Expectation–Maximization algorithm, to denoise two datasets of local field potentials recorded from monkeys performing a visuomotor task. For the first dataset, it was found that the analysis of the high gamma band (60–90 Hz) neural activity in the prefrontal cortex is highly susceptible to the effect of noise, and denoising leads to markedly improved results that were physiologically interpretable. For the second dataset, Granger causality between primary motor and primary somatosensory cortices was not consistent across two monkeys and the effect of noise was suspected. After denoising, the discrepancy between the two subjects was significantly reduced.
Resumo:
A pseudo-dynamical approach for a class of inverse problems involving static measurements is proposed and explored. Following linearization of the minimizing functional associated with the underlying optimization problem, the new strategy results in a system of linearized ordinary differential equations (ODEs) whose steady-state solutions yield the desired reconstruction. We consider some explicit and implicit schemes for integrating the ODEs and thus establish a deterministic reconstruction strategy without an explicit use of regularization. A stochastic reconstruction strategy is then developed making use of an ensemble Kalman filter wherein these ODEs serve as the measurement model. Finally, we assess the numerical efficacy of the developed tools against a few linear and nonlinear inverse problems of engineering interest.
Efficient implementations of a pseudodynamical stochastic filtering strategy for static elastography
Resumo:
A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.
Resumo:
State and parameter estimations of non-linear dynamical systems, based on incomplete and noisy measurements, are considered using Monte Carlo simulations. Given the measurements. the proposed method obtains the marginalized posterior distribution of an appropriately chosen (ideally small) subset of the state vector using a particle filter. Samples (particles) of the marginalized states are then used to construct a family of conditionally linearized system of equations and thus obtain the posterior distribution of the states using a bank of Kalman filters. Discrete process equations for the marginalized states are derived through truncated Ito-Taylor expansions. Increased analyticity and reduced dispersion of weights computed over a smaller sample space of marginalized states are the key features of the filter that help achieve smaller sample variance of the estimates. Numerical illustrations are provided for state/parameter estimations of a Duffing oscillator and a 3-DOF non-linear oscillator. Performance of the filter in parameter estimation is also assessed using measurements obtained through experiments on simple models in the laboratory. Despite an added computational cost, the results verify that the proposed filter generally produces estimates with lower sample variance over the standard sequential importance sampling (SIS) filter.
Resumo:
This paper presents an analysis of an optimal linear filter in the presence of constraints on the moan squared values of the estimates from the viewpoint of singular optimal control. The singular arc has been shown to satisfy the generalized Legcndrc-Clebseh condition and Jacobson's condition. Both the cases of white measurement noise and coloured measurement noise are considered. The constrained estimate is shown to be a linear transformation of the unconstrained Kalman estimate.
Resumo:
A nonlinear control design approach is presented in this paper for a challenging application problem of ensuring robust performance of an air-breathing engine operating at supersonic speed. The primary objective of control design is to ensure that the engine produces the required thrust that tracks the commanded thrust as closely as possible by appropriate regulation of the fuel flow rate. However, since the engine operates in the supersonic range, an important secondary objective is to ensure an optimal location of the shock in the intake for maximum pressure recovery with a sufficient margin. This is manipulated by varying the throat area of the nozzle. The nonlinear dynamic inversion technique has been successfully used to achieve both of the above objectives. In this problem, since the process is faster than the actuators, independent control designs have also been carried out for the actuators as well to assure the satisfactory performance of the system. Moreover, an extended Kalman Filter based state estimation design has been carried out both to filter out the process and sensor noises as well as to make the control design operate based on output feedback. Promising simulation results indicate that the proposed control design approach is quite successful in obtaining robust performance of the air-breathing system.
Resumo:
Particle filters find important applications in the problems of state and parameter estimations of dynamical systems of engineering interest. Since a typical filtering algorithm involves Monte Carlo simulations of the process equations, sample variance of the estimator is inversely proportional to the number of particles. The sample variance may be reduced if one uses a Rao-Blackwell marginalization of states and performs analytical computations as much as possible. In this work, we propose a semi-analytical particle filter, requiring no Rao-Blackwell marginalization, for state and parameter estimations of nonlinear dynamical systems with additively Gaussian process/observation noises. Through local linearizations of the nonlinear drift fields in the process/observation equations via explicit Ito-Taylor expansions, the given nonlinear system is transformed into an ensemble of locally linearized systems. Using the most recent observation, conditionally Gaussian posterior density functions of the linearized systems are analytically obtained through the Kalman filter. This information is further exploited within the particle filter algorithm for obtaining samples from the optimal posterior density of the states. The potential of the method in state/parameter estimations is demonstrated through numerical illustrations for a few nonlinear oscillators. The proposed filter is found to yield estimates with reduced sample variance and improved accuracy vis-a-vis results from a form of sequential importance sampling filter.
Resumo:
This paper compares closed-loop performance of seeker-based and radar-based estimators for surface-to-air interception through 6-degree-of-freedom simulation using proportional navigation guidance.Ground radar measurements are evader range, azimuth and elevation angles contaminated by Gaussian noise. Onboard seeker measurements are pursuer-evader relative range, range rate also contaminated by Gaussian noise. The gimbal angles and line-of-sight rates in the gimbal frame,contaminated by time-correlated non-Gaussian noise with realistic numerical values are also available as measurements. In both the applications, extended Kalman filter with Gaussian noise assumption are used for state estimation. For a typical engagement, it is found that,based on Monte Carlo studies, seeker estimator outperforms radar estimator in terms of autopilot demand and reduces the miss distance.Thus, a seeker estimator with white Gaussian assumption is found to be adequate to handle the measurements even in the presence of non-Gaussian correlated noise. This paper uses realistic numerical values of all noise parameters.