45 resultados para Fibre optics
em Indian Institute of Science - Bangalore - Índia
Resumo:
A new fibre-optic sensor, based on the speckle phenomenon, for the measurement of current is described. The technique has the advantages of simplicity and sensitivity, but requires a two-step measurement procedure.
Resumo:
The recently discovered twist phase is studied in the context of the full ten-parameter family of partially coherent general anisotropic Gaussian Schell-model beams. It is shown that the nonnegativity requirement on the cross-spectral density of the beam demands that the strength of the twist phase be bounded from above by the inverse of the transverse coherence area of the beam. The twist phase as a two-point function is shown to have the structure of the generalized Huygens kernel or Green's function of a first-order system. The ray-transfer matrix of this system is exhibited. Wolf-type coherent-mode decomposition of the twist phase is carried out. Imposition of the twist phase on an otherwise untwisted beam is shown to result in a linear transformation in the ray phase space of the Wigner distribution. Though this transformation preserves the four-dimensional phase-space volume, it is not symplectic and hence it can, when impressed on a Wigner distribution, push it out of the convex set of all bona fide Wigner distributions unless the original Wigner distribution was sufficiently deep into the interior of the set.
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.
Resumo:
Recently, reports have appeared which show structural variations in B-DNA and indicate deviations from a uniform helical structure. We report for the first time that these indications are also present in the B-form fibre diffraction patterns for the lithium salt of natural DNA. We have used an improved method of controlling the salt concentration in the fibres. Our results are based on the appearance and disappearance of meridional reflections on different layer lines depending upon the salt.
Resumo:
A necessary and sufficient condition for the 4 × 4 Mueller matrix to be derivable from the 2 × 2 Jones matrix is obtained. This condition allows one to determine if a given Mueller matrix describes a totally polarized system or a partially polarized (depolarizing) system. The result of Barakat is analysed in the light of this condition. A recently reported experimentally measured Mueller matrix is examined using this condition and is shown to represent a partially polarized system.
Resumo:
The recently introduced generalized pencil of Sudarshan which gives an exact ray picture of wave optics is analysed in some situations of interest to wave optics. A relationship between ray dispersion and statistical inhomogeneity of the field is obtained. A paraxial approximation which preserves the rectilinear propagation character of the generalized pencils is presented. Under this approximation the pencils can be computed directly from the field conditions on a plane, without the necessity to compute the cross-spectral density function in the entire space as an intermediate quantity. The paraxial results are illustrated with examples. The pencils are shown to exhibit an interesting scaling behaviour in the far-zone. This scaling leads to a natural generalization of the Fraunhofer range criterion and of the classical van Cittert-Zernike theorem to planar sources of arbitrary state of coherence. The recently derived results of radiometry with partially coherent sources are shown to be simple consequences of this scaling.
Resumo:
We report on the bacterial protein-based all-optical switches which operate at low laser power, high speed and fulfil most of the requirements to be an ideal all-optical switch without any moving parts involved. This consists of conventional optical waveguides coated with bacteriorhodopsin films at switching locations. The principle of operation of the switch is based on the light-induced refractive index change of bacteriorhodopsin. This approach opens the possibility of realizing proteinbased all-optical switches for communication network, integrated optics and optical computers.
Resumo:
A-DNA pattern, obtained using a flat plat camera, was indexed by Fuller Image on the basis of a c-face centred monoclinic cell with A = 22.24 Å, B = 40.62 Å, C = 28.15 Å and β = 97.0°. A precession photograph of A-DNA which gives an undistorted picture of the lattice, showed that the unit cell parameters as given by Fuller Image were not quite correct. The precession photograph showed a strong meridional reflection (R = 0.00 Å−1) on the 11th layer line. But the occurrence of the meridional reflection on the 11th layer line could not be explained on the basis of the cell parameters given by Fuller Image ; using those cell parameters the reflection which comes closest to the meridian on 11th layer line is at R = 0.025 Å−1. However, a simple interchange of a and b values accounted for the meridional reflection on 11th layer line. The corrected cell parameter refined against 28 strong spots are A = 40.75 Å, B = 22.07 Å, C = 28.16 Å and β = 97.5°. In the new unit cell of A-DNA, the packing arrangement of the two molecules is different from that in the old one. Nonetheless, our earlier contention is again reaffirmed that both right and left-handed A-DNA are stereochemically allowed and consistent with the observed fibre pattern.
Resumo:
The Mueller-Stokes formalism that governs conventional polarization optics is formulated for plane waves, and thus the only qualification one could require of a 4 x 4 real matrix M in order that it qualify to be the Mueller matrix of some physical system would be that M map Omega((pol)), the positive solid light cone of Stokes vectors, into itself. In view of growing current interest in the characterization of partially coherent partially polarized electromagnetic beams, there is a need to extend this formalism to such beams wherein the polarization and spatial dependence are generically inseparably intertwined. This inseparability brings in additional constraints that a pre-Mueller matrix M mapping Omega((pol)) into itself needs to meet in order to be an acceptable physical Mueller matrix. These additional constraints are motivated and fully characterized. (C) 2010 Optical Society of America
Resumo:
The issue raised in this Letter is classical, not only in the sense of being nonquantum, but also in the sense of being quite ancient: which subset of 4 X 4 real matrices should be accepted as physical Mueller matrices in polarization optics? Nonquantum entanglement or inseparability between the polarization and spatial degrees of freedom of an electromagnetic beam whose polarization is not homogeneous is shown to provide the physical basis to resolve this issue in a definitive manner.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
We present a design of a universal gadget, consisting of two half-wave plates and two quarter-wave plates coaxially mounted, which can realize every SU (2) polarization optical transformation; to realize a given SU (2) element one simply has to rotate these plates about the common axis to angular positions characteristic of the element. The design is also geometrically interpreted in terms of Hamilton's theory of turns for the group SU (2).
Resumo:
Hamilton’s theory of turns for the group SU(2) is exploited to develop a new geometrical representation for polarization optics. While pure polarization states are represented by points on the Poincaré sphere, linear intensity preserving optical systems are represented by great circle arcs on another sphere. Composition of systems, and their action on polarization states, are both reduced to geometrical operations. Several synthesis problems, especially in relation to the Pancharatnam-Berry-Aharonov-Anandan geometrical phase, are clarified with the new representation. The general relation between the geometrical phase, and the solid angle on the Poincaré sphere, is established.