105 resultados para Fiber lasers

em Indian Institute of Science - Bangalore - Índia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of a Fiber Bragg Grating (FBG) inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. Comparison with a commercial grating with 99.9% reflectivity shows a similar decay dynamics. It is proposed that the distortion due to simultaneous erasure and thermal expansion of the index modulation profile may be responsible for the observed anomaly. The reported results help us in understanding the thermal behavior of FBGs and provide additional insights into the mechanisms responsible for the photosensitivity in germanosilicate fibers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rectangular dielectric waveguide is the most commonly used structure in integrated optics, especially in semi-conductor diode lasers. Demands for new applications such as high-speed data backplanes in integrated electronics, waveguide filters, optical multiplexers and optical switches are driving technology toward better materials and processing techniques for planar waveguide structures. The infinite slab and circular waveguides that we know are not practical for use on a substrate because the slab waveguide has no lateral confinement and the circular fiber is not compatible with the planar processing technology being used to make planar structures. The rectangular waveguide is the natural structure. In this review, we have discussed several analytical methods for analyzing the mode structure of rectangular structures, beginning with a wave analysis based on the pioneering work of Marcatili. We study three basic techniques with examples to compare their performance levels. These are the analytical approach developed by Marcatili, the perturbation techniques, which improve on the analytical solutions and the effective index method with examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical method has been proposed to optimise the small-signaloptical gain of CO2-N2 gasdynamic lasers (gdl) employing two-dimensional (2D) wedge nozzles. Following our earlier work the equations governing the steady, inviscid, quasi-one-dimensional flow in the wedge nozzle of thegdl are reduced to a universal form so that their solutions depend on a single unifying parameter. These equations are solved numerically to obtain similar solutions for the various flow quantities, which variables are subsequently used to optimize the small-signal-gain. The corresponding optimum values like reservoir pressure and temperature and 2D nozzle area ratio also have been predicted and graphed for a wide range of laser gas compositions, with either H2O or He as the catalyst. A large number of graphs are presented which may be used to obtain the optimum values of small signal gain for a wide range of laser compositions without further computations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of the steady-state solutions of mode-locking of cw lasers by a fast saturable absorber is imvestigated. It is shown that the solutions are stable if the condition (Ps/Pa) = (2/3) (P0Pa) is satisfied, where (Ps/Pa) is the steady-state la ser power, (P0/Pa) is the power at mode-locking threshold, and Pa is the saturated power of the absorber.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of Lorentz and Doppler line-broadening mechanisms on the small-signal optical gain of lasers and, in particular, gasdynamic lasers, is discussed. A relationship between the critical parameter reflecting the line-broadening mechanisms and some of the important parameters arising out of the gain optimization studies in CO2-N2 gasdynamic lasers is established. Using this relationship, methods by which the deleterious effect of the Doppler mechanisms on small-signal gain can be suppressed are suggested. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we describe a novel FBG interrogation system in which FBGs are used as both sensing and reference elements. The reference FBGs is bonded to a mechanical flexure system having a linear amplification of 1:3.5, which is actuated using a piezo-actuator by applying a 0-150V ramp. The lengths of the reference gratings decide the maximum strain that can be applied to the reference grating, which in turn decides that strain range which can be interrogated. The main advantages of the present system are the on-line measurement of the wavelength shifts, small size, good sensitivity, multiplexing capability and low cost.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on a method proposed by Reddy and Shanmugasundaram, similar solutions have been obtained for the steady inviscid quasi-one-dimensional nonreacting flow in the supersonic nozzle of CO2-N2-H2O and CO2-N2-He gasdynamic laser systems. Instead of using the correlations of a nonsimilar function NS for pure N2 gas, as is done in previous publications, the NS correlations are computed here for the actual gas mixtures used in the gasdynamic lasers. Optimum small-signal optical gain and the corresponding optimum values of the operating parameters like reservoir pressure and temperature and nozzle area ratio are computed using these correlations. The present results are compared with the previous results and the main differences are discussed. Journal of Applied Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attention is given to the results of optimization studies with a 16-micron CO2-N2-H2 GDL employing two-dimensional wedge nozzles. The optimum value of the achievable gain reaches 12.7 percent/cm on the P(15) line for a 30:50:20 percent respective apportionment of the aforementioned gases. The corresponding optimum values for reservoir pressure and area ratio are computed as functions of reservoir temperature, and presented graphically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An instrument for simultaneous measurement of dynamic strain and temperature in a thermally unstable ambience has been proposed, based on fiber Bragg grating technology. The instrument can function as a compact and stand-alone broadband thermometer and a dynamic strain gauge. It employs a source wavelength tracking procedure for linear dependence of the output on the measurand, offering high dynamic range. Two schemes have been demonstrated with their relative merits. As a thermometer, the present instrumental configuration can offer a linear response in excess of 500 degrees C that can be easily extended by adding a suitable grating and source without any alteration in the procedure. Temperature sensitivity is about 0.06 degrees C for a bandwidth of 1 Hz. For the current grating, the upper limit of strain measurement is about 150 mu epsilon with a sensitivity of about 80 n epsilon Hz(-1/2). The major source of uncertainty associated with dynamic strain measurement is the laser source intensity noise, which is of broad spectral band. A low noise source device or the use of optical power regulators can offer improved performance. The total harmonic distortion is less than 0.5% up to about 50 mu epsilon, 1.2% at 100 mu epsilon and about 2.3% at 150 mu epsilon. Calibrated results of temperature and strain measurement with the instrument have been presented. Traces of ultrasound signals recorded by the system at 200 kHz, in an ambience of 100-200 degrees C temperature fluctuation, have been included. Also, the vibration spectrum and engine temperature of a running internal combustion engine has been recorded as a realistic application of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor, tyrphostin-A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin-A47-treated spermatozoa exhibited circular motility, which was associated with a distinct hypo-tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000-60,000. In this study, we provide evidence on the localization of capacitation-associated tyrosine-phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo-tyrosine phosphorylated major proteins of tyrphostin-A47-treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein-2 and the 51 kDa protein as tektin-2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo-tyrosine-phosphorylation status of outer dense fiber protein-2 and tektin-2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR-tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Active Fiber Composites (AFC) possess desirable characteristics over a wide range of smart structure applications, such as vibration, shape and flow control as well as structural health monitoring. This type of material, capable of collocated actuation and sensing, call be used in smart structures with self-sensing circuits. This paper proposes four novel applications of AFC structures undergoing torsion: sensors and actuators shaped as strips and tubes; and concludes with a preliminary failure analysis. To enable this, a powerful mathematical technique, the Variational Asymptotic Method (VAM) was used to perform cross-sectional analyses of thin generally anisotropic AFC beams. The resulting closed form expressions have been utilized in the applications presented herein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The change in extension-twist Coupling due to delamination in antisymmetric laminates is experimentally measured. Experimental results are compared with the results from analytical expression existing in literature and finite element analysis. The application of the Macro-Fiber Composite (MFC) developed at the NASA Langley Research Center for sensing the delamination in the laminates is investigated. While many applications have been reported in the literature using the MFC as an actuator, here its use as a twist sensor has been studied. The real-life application envisaged is structural health monitoring of laminated composite flexbeams taking advantage of the symmetry in the structure. Apart from the defect detection under symmetric conditions, other methods of health monitoring for the same structure are reported for further validation. Results show that MFC works well as a sensor.