48 resultados para Fiber Bragg grating (FBG)

em Indian Institute of Science - Bangalore - Índia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Here, we describe a novel FBG interrogation system in which FBGs are used as both sensing and reference elements. The reference FBGs is bonded to a mechanical flexure system having a linear amplification of 1:3.5, which is actuated using a piezo-actuator by applying a 0-150V ramp. The lengths of the reference gratings decide the maximum strain that can be applied to the reference grating, which in turn decides that strain range which can be interrogated. The main advantages of the present system are the on-line measurement of the wavelength shifts, small size, good sensitivity, multiplexing capability and low cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The term Structural Health Monitoring has gained wide acceptance in the recent pastas a means to monitor a structure and provide an early warning of an unsafe conditionusing real-time data. Utilization of structurally integrated, distributed sensors tomonitor the health of a structure through accurate interpretation of sensor signals andreal-time data processing can greatly reduce the inspection burden. The rapidimprovement of the Fiber Bragg Grating sensor technology for strain, vibration andacoustic emission measurements in recent times make them a feasible alternatives tothe traditional strain gauges transducers and conventional Piezoelectric sensors usedfor Non Destructive Evaluation (NDE) and Structural Health Monitoring (SHM).Optical fiber-based sensors offers advantages over conventional strain gauges, PVDFfilm and PZT devices in terms of size, ease of embedment, immunity fromelectromagnetic interference(EMI) and potential for multiplexing a number ofsensors. The objective of this paper is to demonstrate the feasibility of Fiber BraggGrating sensor and compare its utility with the conventional strain gauges and PVDFfilm sensors. For this purpose experiments are being carried out in the laboratory on acomposite wing of a mini air vehicle (MAV). In this paper, the results obtained fromthese preliminary experiments are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the design and development of a Fiber Bragg Grating (FBG) sensor system for monitoring tsunami waves generated in the deep ocean. An experimental setup was designed and fabricated to simulate the generation and propagation of a tsunami wave. The characteristics and efficiency of the developed FBG sensor was evaluated with a standard commercial Digiquartz sensor. For real time monitoring of tsunami waves, FBG sensors bonded to a cantilever is used and the wavelength shifts (Delta lambda(B)) in the reflected spectra resulting from the strain/pressure imparted on the FBGs have been recorded using a high-speed Micron Optics FBG interrogation system. The parameters sensed are the signal burst during tsunami generation and pressure variations at different places as the tsunami wave propagates away from the source of generation. The results obtained were compared with the standard commercial sensor used in tsunami detection. The observations suggest that the FBG sensor was highly sensitive and free from many of the constraints associated with the commercial tsunameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel high sensitive fiber Bragg grating (FBG) strain sensing technique using lasers locked to relative frequency reference is proposed and analyzed theoretically. Static strain on FBG independent of temperature can be measured by locking frequency of diode laser to the mid reflection frequency of matched reference FBG, which responds to temperature similar to that of the sensor FBG, but is immune to strain applied to the same. Difference between light intensities reflected from the sensor and reference FBGs (proportional to the difference between respective pass band gains at the diode laser frequency) is not only proportional to the relative strain between the sensor and reference FBGs but also independent of servo residual frequency errors. Usage of relative frequency reference avoids all complexities involved in the usage of absolute frequency reference, hence, making the system simple and economical. Theoretical limit for dynamic and static strain sensitivities considering all major noise contributions are of the order of 25 (p epsilon) / root Hz and 1.2 n epsilon / root Hz respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fiber bragg grating (FBG) sensors have been widely used for number of sensing applications like temperature, pressure, acousto-ultrasonic, static and dynamic strain, refractive index change measurements and so on. Present work demonstrates the use of FBG sensors in in-situ measurement of vacuum process with simultaneous leak detection capability. Experiments were conducted in a bell jar vacuum chamber facilitated with conventional Pirani gauge for vacuum measurement. Three different experiments have been conducted to validate the performance of FBG sensor in monitoring vacuum creating process and air bleeding. The preliminary results of FBG sensors in vacuum monitoring have been compared with that of commercial Pirani gauge sensor. This novel technique offers a simple alternative to conventional method for real time monitoring of evacuation process. Proposed FBG based vacuum sensor has potential applications in vacuum systems involving hazardous environment such as chemical and gas plants, automobile industries, aeronautical establishments and leak monitoring in process industries, where the electrical or MEMS based sensors are prone to explosion and corrosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparative study of strain response and mechanical properties of rammed earth prisms, has been made using Fiber Bragg Grating (FBG) sensors (optical) and clip-on extensometer (electro-mechanical). The aim of this study is to address the merits and demerits of traditional extensometer vis-à-vis FBG sensor; a uni-axial compression test has been performed on a rammed earth prism to validate its structural properties from the stress - strain curves obtained by two different methods of measurement. An array of FBG sensors on a single fiber with varying Bragg wavelengths (..B), has been used to spatially resolve the strains along the height of the specimen. It is interesting to note from the obtained stress-strain curves that the initial tangent modulus obtained using the FBG sensor is lower compared to that obtained using clip-on extensometer. The results also indicate that the strains measured by both FBG and extensometer sensor follow the same trend and both the sensors register the maximum strain value at the same time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through this paper we experimentally demonstrate the fabrication of a fiber Bragg grating (FBG) chemical sensor to detect and determine the manganese concentration in water and compare our results with sophisticated spectroscopic methods, such as atomic absorption spectrometry and the inductively coupled plasma method. Here we propose a simple method to develop a thin layer of gold nanoparticles above the etched grating region to enhance the sensitivity of the reflected spectrum of the FBG. By doing so, we achieve a sensitivity of 1.26 nm/parts per million in determining the trace level of Mn in water. Proper reagents are used to detect manganese in water. (C) 2011 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While Fiber Bragg Grating (FBG) sensors have been extensively used for temperature and strain sensing, clad etched FBGs (EFBGs) have only recently been explored for refractive index sensing. Prior literature in EFBG based refractive index sensing predominantly deals with bulk refractometry only, where the Bragg wavelength shift of the sensor as a function of the bulk refractive index of the sample can be analytically modeled, unlike the situation for adsorption of molecular thin films on the sensor surface. We used a finite element model to calculate the Bragg wavelength change as a function of thickness and refractive index of the adsorbing molecular layer and compared the model with the real-time, in-situ measurement of electrostatic layer-by-layer (LbL) assembly of weak polyelectrolytes on the silica surface of EFBGs. We then used this model to calculate the layer thickness of LbL films and found them to be in agreement with literature. Further, we used this model to arrive at a realistic estimate of the limit of detection of EFBG sensors based on nominal measurement noise levels in current FBG interrogation systems and found that sufficiently thinned EFBGs can provide a competitive platform for real-time measurement of molecular interactions while simultaneously leveraging the high multiplexing capabilities of fiber optics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we report a novel hydrogel functionalized optical Fiber Bragg Grating (FBG) sensor based on chemo-mechanical-optical sensing, and demonstrate its specific application in pH activated process monitoring. The sensing mechanism is based on the stress due to ion diffusion and polymer phase transition which produce strain in the FBG. This results in shift in the Bragg wavelength which is detected by an interrogator system. A simple dip coating method to coat a thin layer of hydrogel on the FBG has been established. The gel consists of sodium alginate and calcium chloride. Gel formation is observed in real-time by continuously monitoring the Bragg wavelength shift. We have demonstrated pH sensing in the range of pH of 2 to 10. Another interesting phenomenon is observed by swelling and deswelling of FBG functionalized with hydrogel by a sequence of alternate dipping between acidic and base solutions. It is observed that the Bragg wavelength undergoes reversible and repeatable pH dependent switching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an ab initio design and development of a novel Fiber Bragg Grating (FBG) sensor based strain sensing plate for the measurement of plantar strain distribution in human foot. The primary aim of this work is to study the feasibility of usage of FBG sensors in the measurement of plantar strain in the foot; in particular, to spatially resolve the strain distribution in the foot at different regions such as fore-foot, mid-foot and hind-foot. This study also provides a method to quantify and compare relative postural stability of different subjects under test; in addition, traditional accelerometers have been used to record the movements of center of gravity (second lumbar vertebra) of the subject and the results obtained have been compared against the outcome of the postural stability studies undertaken using the developed FBG plantar strain sensing plate. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we show a novel chemo-mechanical-optical sensing mechanism in single and multi-layer hydrogel coated Fiber Bragg Grating (FBG) and demonstrate specific application in pH activated processes. The sensing device is based on the ionizable monomers inside the hydrogel which reversibly dissociates as a function of the pH and consequently resulting in osmotic pressure difference between the gel and the solution. This pressure gradient causes the hydrogel to deform which in turn induces secondary strain on the FBG sensor resulting in shift in the Bragg wavelength. We also report on the sensitivity factor of single and multilayer hydrogel coated FBG at various different pH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various leg exercises have been recommended to prevent deep vein thrombosis (DVT), a condition where a blood clot forms in the deep veins, especially during long-haul flights. Accessing the benefit of each of these exercises in avoiding the DVT, which can be fatal, is important in the context of suggesting the correct and the most beneficial exercises. Present work aims at demonstrating the fiber Bragg grating (FBG)-based sensing methodology for measuring surface strains generated on the skin of the calf muscle to evaluate the suggested airline exercises to avoid DVT. As the dataset in the experiment involves multiple subjects performing these exercises, an inertial measurement unit has been used to validate the repetitiveness of each of the exercises. The surface strain on the calf muscle obtained using the FBG sensor, which is a measure of the calf muscle deformation, has been compared against the variation of blood velocity in the femoral vein of the thigh measured using a commercial electronic-phased array color Doppler ultrasound system. Apart from analyzing the effectiveness of suggested exercises, a new exercise which is more effective in terms of strain generated to avoid DVT is proposed and evaluated. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)