6 resultados para Fellows Gear Shaper Company.
em Indian Institute of Science - Bangalore - Índia
Resumo:
The finite element method (FEM) is used to determine for pitch-point, mid-point and tip loading, the deflection curve of a Image 1 diamentral pitch (DP) standard spur gear tooth corresponding to number of teeth of 14, 21, 26 and 34. In all these cases the deflection of the gear tooth at the point of loading obtained by FEM is in good agreement with the experimental value. The contraflexure in the deflection curve at the point of loading observed experimentally in the cases of pitch-point and mid-point loading, is predicted correctly by the FEM analysis.
Resumo:
Flow-graph techniques are applied in this article for the analysis of an epicyclic gear train. A gear system based on this is designed and constructed for use in Numerical Control Systems.
Resumo:
An epicyclic gear-train system with a speed step-up of 1:10, useful for numerical control work, is presented. Also, the analysis of such a system is carried out using flowgraph techniques.
Resumo:
In this paper we address a scheduling problem for minimising total weighted tardiness. The motivation for the paper comes from the automobile gear manufacturing process. We consider the bottleneck operation of heat treatment stage of gear manufacturing. Real life scenarios like unequal release times, incompatible job families, non-identical job sizes and allowance for job splitting have been considered. A mathematical model taking into account dynamic starting conditions has been developed. Due to the NP-hard nature of the problem, a few heuristic algorithms have been proposed. The performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small size problem instances, and (b) in comparison with `estimated optimal solution' for large size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently obtaining near-optimal solutions (that is, statistically estimated one) in very reasonable computational time.
Resumo:
In this paper, we address a scheduling problem for minimizing total weighted flowtime, observed in automobile gear manufacturing. Specifically, the bottleneck operation of the pre-heat treatment stage of gear manufacturing process has been dealt with in scheduling. Many real-life scenarios like unequal release times, sequence dependent setup times, and machine eligibility restrictions have been considered. A mathematical model taking into account dynamic starting conditions has been proposed. The problem is derived to be NP-hard. To approach the problem, a few heuristic algorithms have been proposed. Based on planned computational experiments, the performance of the proposed heuristic algorithms is evaluated: (a) in comparison with optimal solution for small-size problem instances and (b) in comparison with the estimated optimal solution for large-size problem instances. Extensive computational analyses reveal that the proposed heuristic algorithms are capable of consistently yielding near-statistically estimated optimal solutions in a reasonable computational time.