153 resultados para Fecal specimens
em Indian Institute of Science - Bangalore - Índia
Resumo:
The aim of the present work was to investigate whether the hypocholesterolemic effect of polyunsaturated oils is due to inhibition of cholesterol synthesis or increased excretion of cholesterol and bile acids through the bile and feces of animals. Separate groups of rats were fed diets containing 10% safflower oil, coconut oil or hydrogenated vegetable oils for 30 days, after which the hepatic cholesterol and bile acid synthesis and their excretion through the bile and feces were studied. As compared to the rats in the other two groups, those given the diet containing 10% safflower oil showed markedly increased rates of bile flow and excreted through their bile and feces markedly higher amounts of cholesterol and bile acids. At the same time incorporation of [1-14C] acetate and [2-14C] mevalonate into the liver cholesterol and conversion of [4-14C] cholesterol into 14C-bile acids were also higher in the same rats. In the light of these observations it has been discussed that in the animals given polyunsaturated oils, biliary and fecal loss of cholesterol and bile acids far outweighs the activation of cholesterol synthesis and thereby effectively lowers the serum cholesterol levels.
Resumo:
Asian elephants (Dephas maximus), prominent ``flagship species'', arelisted under the category of endangered species (EN - A2c, ver. 3.1, IUCN Red List 2009) and there is a need for their conservation This requires understanding demographic and reproductive dynamics of the species. Monitoring reproductive status of any species is traditionally being carried out through invasive blood sampling and this is restrictive for large animals such as wild or semi-captive elephants due to legal. ethical, and practical reasons Hence. there is a need for a non-invasive technique to assess reproductive cyclicity profiles of elephants. which will help in the species' conservation strategies In this study. we developed an indirect competitive enzyme linked immuno-sorbent assay (ELISA) to estimate the concentration of one of the progesterone-metabolites i.e, allopregnanolone (5 alpha-P-3OH) in fecal samples of As elephants We validated the assay which had a sensitivity of 0.25 mu M at 90% binding with an EC50 value of 1 37 mu M Using female elephants. kept under semi-captive conditions in the forest camps of Mudumalar Wildlife Sanctuary, Tamil Nadu and Bandipur National Park, Karnataka, India. we measured fecal progesterone-metabolite (5 alpha-P-3OH) concentrations in six an and showed their clear correlation with those of scrum progesterone measured by a standard radio-immuno assay. Statistical analyses using a Linear Mixed Effect model showed a positive correlation (P < 0 1) between the profiles of fecal 5 alpha-P-3OH (range 0 5-10 mu g/g) and serum progesterone (range: 0 1-1 8 ng/mL) Therefore, our studies show, for the first time, that the fecal progesterone-metabolite assay could be exploited to predict estrus cyclicity and to potentially assess the reproductive status of captive and free-ranging female Asian elephants, thereby helping to plan their breeding strategy (C) 2010 Elsevier Inc.All rights reserved.
Resumo:
Back face strain (BFS) measurement is now well-established as an indirect technique to monitor crack length in compact tension (CT) fracture specimens [1,2]. Previous work [2] developed empirical relations between fatigue crack propagation (FCP) parameters. BFS, and number of cycles for CT specimens subjected to constant amplitude fatigue loading. These predictions are experimentally validated in terms of the variations of mean values of BFS and load as a function of crack length. Another issue raised by this study concerns the validity of assigning fixed values for the Paris parameters C and n to describe FCP in realistic materials.
Resumo:
A simple one dimensional inertial model is presented for transient response analysis of notched beams under impact, and extracting dynamic initiation toughness values. The model includes the effects of striker mass interactions, and contact deformations of the beam. Displacement time history of the striker mass is applied to the model as forcing function. The model is validated by comparison with the experimental investigation on ductile aluminium 6061 alloy and brittle polymer, PMMA.
Resumo:
A fatigue crack growth rate study has been carried out on L-72 aluminium alloy plate specimens with and without cold worked holes. The cold worked specimens showed significantly increased fatigue life compared to unworked specimens. Computer software is developed to evaluate the stress intensity factor for non-uniform stress distributions using Green's function approach. The exponents for the Paris equation in the stable crack growth region for cold worked and unworked specimens are 1.26 and 3.15 respectively. The reduction in exponent value indicates the retardation in crack growth rate. An SEM study indicates more plastic deformation at the edge of the hole for unworked samples as compared to the worked samples during the crack initiation period.
Resumo:
Design, analysis and technology for the integrity enhancement of damaged or underdesigned structures continues to be an engineering challenge. Bonded composite patch repairs to metallic structures is receiving increased attention in the recent years. It offers various advantages over rivetted doubler, particularly for airframe repairs. This paper presents an experimental investigation of residual strength and fatigue crack-growth life of an edge-cracked aluminium specimen repaired using glass epoxy composite patch. The investigation begins with the evaluation of three different surface treatments from bond strength viewpoint. A simple thumb rule formula is employed to estimate the patch size. Cracked and repaired specimens are tested under static and fatigue loading. The patch appears to restore the original strength of the undamaged specimen and enhance the fatigue crack growth life by an order of magnitude. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Reproductive management of the Asian elephant (Elephas maximus) is important for its conservation. To monitor its estrous cyclicity, we earlier used an indirect ELISA to show that levels of fecal progesterone (P(4))-metabolite (allopregnanolone: 5 alpha-P-3OH) in semi-captive females sampled randomly positively correlated with serum P(4) levels [12]. In this longitudinal study (51 weeks), we measured levels of fecal 5 alpha-P-3OH and serum P(4) in seven semi-captive female elephants. Females exhibited three types of hormonal profiles. Four females showed cyclical patterns of fecal 5 alpha-P-3OH and serum P(4) typical of normal estrous cycles, two showed acyclic pattern while one showed high values indicative of a pregnant animal. Values for anestrous or follicular phases were <= 0.3 mu g g(-1), (5 alpha-P-3OH) and <= 0.3 ng mL(-1) (P(4)); for luteal phase 0.32-11.09 mu g g(-1) (5 alpha-P-3OH) and 0.32-1.48 ng mL(-1) (P(4)); for pregnancy 1.41-7.38 mu g g(-1) (5 alpha-P-3OH) and 0.39-1.6 ng mL(-1) (R(4)). A positive correlation (t = 8.8, p < 0.01, n = 321) between levels of fecal 5 alpha-P-3OH and serum P4 was observed. A random sample of 30 free-ranging female elephants showed fecal 5 alpha-P-3OH values of 0.06-23.4 mu g g(-1), indicating them to be in different stages of estrous cyclicity. This study is the first to assess the reproductive phases of female Asian elephants based on the correlative-patterns of both the fecal 5 alpha-P-3OH and serum P(4) values over multiple estrous cycles. This has a potential application in the reproductive management and conservation of Asian elephants. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
A causative agent in approximately 40% of diarrhea] cases. still remains unidentified. Though many enteroviruses (EVs) are transmitted through fecal-oral route and replicate in the intestinal cells, their association with acute diarrhea has not so far been recognized due to lack of detailed epidemiological investigations. This long-term, detailed molecular epidemiological study aims to conclusively determine the association of non-polio enteroviruses (NPEVs) with acute diarrhea in comaparison with rotavirus (RV) in children. Diarrheal stool specimens from 2161 children aged 0-2 years and 169 children between 2 and 9 years, and 1800 normal stool samples from age-matched healthy children between 0 and 9 years were examined during 2008-2012 for enterovirus (oral polio vaccine strains (OPVs) and NPEVs). Enterovirus serotypes were identified by complete VP1 gene sequence analysis. Enterovirus and rotavirus were detected in 19.01% (380/2330) and 13.82% (322/2330) diarrheal stools. During the study period, annual prevalence of EV- and RV-associated diarrhea ranged between 8% and 22%, but with contrasting seasonal prevalence with RV predominating during winter months and NPEV prevailing in other seasons. NPEVs are associated with epidemics-like outbreaks during which they are detected in up to 50% of diarrheic children, and in non-epidemic seasons in 0-10% of the patients. After subtraction of OPV-positive diarrheal cases (1.81%), while NPEVs are associated with about 17% of acute diarrhea, about 6% of healthy children showed asymptomatic NPEV excretion. Of 37 NPEV serotypes detected in diarrheal children, seven echovirus types 1, 7, 11, 13, 14, 30 and 33 are frequently observed, with Ell being more prevalent followed by E30. In conclusion, NPEVs are significantly associated with acute diarrhea, and NPEVs and rotavirus exhibit contrasting seasonal predominance. This study signifies the need for a new direction of research on enteroviruses involving systematic analysis of their contribution to diarrheal burden. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Stability of a fracture toughness testing geometry is important to determine the crack trajectory and R-curve behavior of the specimen. Few configurations provide for inherent geometric stability, especially when the specimen being tested is brittle. We propose a new geometrical construction called the single edge notched clamped bend specimen (SENCB), a modified form of three point bending, yielding stable cracking under load control. It is shown to be particularly suitable for small-scale structures which cannot be made free-standing, (e.g., thin films, coatings). The SENCB is elastically clamped at the two ends to its parent material. A notch is inserted at the bottom center and loaded in bending, to fracture. Numerical simulations are carried out through extended finite element method to derive the geometrical factor f(a/W) and for different beam dimensions. Experimental corroborations of the FEM results are carried out on both micro-scale and macro-scale brittle specimens. A plot of vs a/W, is shown to rise initially and fall off, beyond a critical a/W ratio. The difference between conventional SENB and SENCB is highlighted in terms of and FEM simulated stress contours across the beam cross-section. The `s of bulk NiAl and Si determined experimentally are shown to match closely with literature values. Crack stability and R-curve effect is demonstrated in a PtNiAl bond coat sample and compared with predicted crack trajectories from the simulations. The stability of SENCB is shown for a critical range of a/W ratios, proving that it can be used to get controlled crack growth even in brittle samples under load control.
Resumo:
Nitrate contamination of groundwater arises from anthropogenic activities, such as, fertilizer and animal manure applications and infiltration of wastewater/leachates. During migration of wastewater and leachates, the vadose zone (zone residing above the groundwater table), is considered to facilitate microbial denitrification. Particle voids in vadose zone are deficient in dissolved oxygen as the voids are partially filled by water and the remainder by air. Discontinuities in liquid phase would also restrict oxygen diffusion and therefore facilitate denitrification in the vadose/unsaturated soil zone. The degree of saturation of soil specimen (S (r)) quantifies the relative volume of voids filled with air and water. Unsaturated specimens have S (r) values ranging between 0 and 100 %. Earlier studies from naturally occurring nitrate losses in groundwater aquifers in Mulbagal town, Kolar District, Karnataka, showed that the sub-surface soils composed of residually derived sandy soil; hence, natural sand was chosen in the laboratory denitrification experiments. With a view to understand the role of vadose zone in denitrification process, experiments are performed with unsaturated sand specimens (S (r) = 73-90 %) whose pore water was spiked with nitrate and ethanol solutions. Experimental results revealed 73 % S (r) specimen facilitates nitrate reduction to 45 mg/L in relatively short durations of 5.5-7.5 h using the available natural organic matter (0.41 % on mass basis of sand); consequently, ethanol addition did not impact rate of denitrification. However, at higher S (r) values of 81 and 90 %, extraneous ethanol addition (C/N = 0.5-3) was needed to accelerate the denitrification rates.
Influence of initial degree of saturation on swell pressures of compacted Barmer bentonite specimens
Resumo:
Densely compacted bentonite or bentonite-sand mixture has been identified as suitable buffer in deep geological repositories as its exceptionally high swelling capacity enables tight contact between the waste canister and surrounding rock. The degree of saturation of the compacted bentonite buffer can increase upon ingress of groundwater from the surrounding rock mass or decrease from evaporation due to high temperature (50-210 degrees C) derived from the waste canister. Available studies indicate that the influence of initial moisture content or degree of saturation on the swell pressure or swell potential of compacted bentonites is unclear. Some studies suggest that initial degree of saturation has an influence, while others suggest that it does not have bearing on the swell pressure of compacted bentonites. This paper examines the influence of initial degree of saturation in montmorillonite voids (termed,S-r,S-MF) on swell pressure of compacted Barmer bentonite-sand mixtures (dry density range: 1.4-2 Mg/m(3)) from micro-structural considerations. The experimental results bring out that, constant dry density specimens that developed similar number of hydration layers upon wetting developed comparable swell pressures and were unaffected by variations in initial S-r,S-MF values. Comparatively, constant dry density specimens that developed dis-similar number of hydration layers upon wetting established different swell pressures and were responsive to variations in initial S-r,S-MF. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present the design and development of a portable, hand-operated composite compliant mechanism for estimating the failure-load of cm-sized stiff objects whose stiffness is of the order of 10 s of kN/m. The motivation for the design comes from the need to estimate the failure-load of mesoscale cemented sand specimens in situ, which is not possible with traditional devices used for large specimens or very small specimens. The composite compliant device, developed in this work, consists of two compliant mechanisms: a force-amplifying compliant mechanism (FaCM) to amplify sufficiently the force exerted by hand in order to break the specimen and a displacement-amplifying compliant mechanism (DaCM) to enable measurement of the force using a proximity sensor. The two mechanisms are designed using the selection-maps technique to amplify the force up to 100N by about a factor of 3 and measure the force with a resolution of 15 mN. The composite device, made using a FaCM, a DaCM, and a Hall effect-based proximity sensor, was tested on mesoscale cemented sand specimens that were 10mm in diameter and 20mm in length. The results are compared with those of a large commercial instrument. Through the experiments, it was observed that the failure-load of the cemented sand specimens varied from 0.95N to 24.33 N, depending on the percentage of cementation and curing period. The estimation of the failure-load using the compliant device was found to be within 1.7% of the measurements obtained using the commercial instrument and thus validating the design. The details of the design, prototyping, specimen preparation, testing, and the results comprise the paper.
Resumo:
The present study focuses prudent elucidation of microbial pollution and antibiotic sensitivity profiling of the fecal coliforms isolated from River Cauvery, a major drinking water source in Karnataka, India. Water samples were collected from ten hotspots during the year 2011-2012. The physiochemical characteristics and microbial count of water samples collected from most of the hotspots exhibited greater biological oxygen demand and bacterial count especially coliforms in comparison with control samples (p <= 0.01). The antibiotic sensitivity testing was performed using 48 antibiotics against the bacterial isolates by disk-diffusion assay. The current study showed that out of 848 bacterial isolates, 93.51 % (n=793) of the isolates were found to be multidrug-resistant to most of the current generation antibiotics. Among the major isolates, 96.46 % (n=273) of the isolates were found to be multidrug-resistant to 30 antibiotics and they were identified to be Escherichia coli by 16S rDNA gene sequencing. Similarly, 93.85 % (n=107), 94.49 % (n=103), and 90.22 % (n=157) of the isolates exhibited multiple drug resistance to 32, 40, and 37 antibiotics, and they were identified to be Enterobacter cloacae, Pseudomonas trivialis, and Shigella sonnei, respectively. The molecular studies suggested the prevalence of blaTEM genes in all the four isolates and dhfr gene in Escherichia coli and Sh. sonnei. Analogously, most of the other Gram-negative bacteria were found to be multidrug-resistant and the Gram-positive bacteria, Staphylococcus spp. isolated from the water samples were found to be methicillin and vancomycin-resistant Staphylococcus aureus. This is probably the first study elucidating the bacterial pollution and antibiotic sensitivity profiling of fecal coliforms isolated from River Cauvery, Karnataka, India.
Resumo:
Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results. (C) 2015 Elsevier Ltd. All rights reserved.