67 resultados para Fatigue life
em Indian Institute of Science - Bangalore - Índia
Resumo:
The effect of thermal cycling on the load-controlled tension-tension fatigue behavior of a Ni-Ti-Fe shape memory alloy (SMA) at room temperature was studied. Considerable strain accumulation was observed to occur in this alloy under both quasi-static and cyclic loading conditions. Though, in all cases, steady-state is reached within the first 50-100 cycles, the accumulated steady-state strain, epsilon(p.ss), is much smaller in thermally cycled alloy. As a result, the fatigue performance of them was found to be significantly enhanced vis-a-vis the as-solutionized alloy. Furthermore, under load-controlled conditions, the fatigue life of Ni-Ti-Fe alloys was found to be exclusively dependent on epsilon(p.ss). Observations made by profilometry and differential scanning calorimetry (DSC) indicate that the 200-500% enhancement in fatigue life of thermally cycled alloy is due to the homogeneous distribution of the accumulated fatigue strain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Better fatigue performance of adhesively bonded joints makes them suitable for most structural applications. However, predicting the service life of bonded joints accurately remains a challenge. In this present study, nonlinear computational simulations have been performed on adhesively bonded single lap ASTM-D1002 shear joint considering both geometrical and material nonlinearities to predict the fatigue life by judiciously applying the modified Coffin-Manson equation for adhesive joints. Elasto-plastic material models have been employed for both the adhesive and the adherends. The predicted life has close agreement in the high cycle fatigue (HCF) regime with empirical observations reported in the literature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Design, analysis and technology for the integrity enhancement of damaged or underdesigned structures continues to be an engineering challenge. Bonded composite patch repairs to metallic structures is receiving increased attention in the recent years. It offers various advantages over rivetted doubler, particularly for airframe repairs. This paper presents an experimental investigation of residual strength and fatigue crack-growth life of an edge-cracked aluminium specimen repaired using glass epoxy composite patch. The investigation begins with the evaluation of three different surface treatments from bond strength viewpoint. A simple thumb rule formula is employed to estimate the patch size. Cracked and repaired specimens are tested under static and fatigue loading. The patch appears to restore the original strength of the undamaged specimen and enhance the fatigue crack growth life by an order of magnitude. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and non-invasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.
Resumo:
This study was aimed at evaluating the static shear strength and fatigue properties of the newly developed refilled friction stir spot welded AA 6061-T6 joints. The keyhole, the process disadvantage of conventional friction stir spot welding, was refilled successfully, using an additional filler plate, with specially designed tools. Two different tool profiles, namely, convex and concave, were used for the refilling process. Sound and defect free joints were obtained by the refilling process. Joints refilled with convex tools showed better static shear strength than those with the concave ones. The variation of microhardness in different regions of the weld was analysed. Fatigue tests were conducted on the lap shear specimens at a stress ratio of R=0.1. The optical micrographs of the welds after fatigue failure in both the conventional and refilled processes were examined to study the fatigue crack propagation and failure modes.
Resumo:
An energy approach within the framework of thermodynamics is used to model the fatigue process in plain concrete. Fatigue crack growth is an irreversible process associated with an irreversible entropy gain. A closed-form expression for entropy generated during fatigue in terms of energy dissipated is derived using principles of dimensional analysis and self-similarity. An increase in compliance is considered as a measure of damage accumulated during fatigue. The entropy at final fatigue failure is shown to be independent of loading and geometry and is proposed as a material property. A relationship between energy dissipated and number of cycles of fatigue loading is obtained. (C) 2015 American Society of Civil Engineers.
Resumo:
In routine industrial design, fatigue life estimation is largely based on S-N curves and ad hoc cycle counting algorithms used with Miner's rule for predicting life under complex loading. However, there are well known deficiencies of the conventional approach. Of the many cumulative damage rules that have been proposed, Manson's Double Linear Damage Rule (DLDR) has been the most successful. Here we follow up, through comparisons with experimental data from many sources, on a new approach to empirical fatigue life estimation (A Constructive Empirical Theory for Metal Fatigue Under Block Cyclic Loading', Proceedings of the Royal Society A, in press). The basic modeling approach is first described: it depends on enforcing mathematical consistency between predictions of simple empirical models that include indeterminate functional forms, and published fatigue data from handbooks. This consistency is enforced through setting up and (with luck) solving a functional equation with three independent variables and six unknown functions. The model, after eliminating or identifying various parameters, retains three fitted parameters; for the experimental data available, one of these may be set to zero. On comparison against data from several different sources, with two fitted parameters, we find that our model works about as well as the DLDR and much better than Miner's rule. We finally discuss some ways in which the model might be used, beyond the scope of the DLDR.
Resumo:
Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.
Resumo:
Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.
Resumo:
Strain-rate effects on the low-cycle fatigue (LCF) behavior of a NIMONIC PE-16 superalloy have been evaluated in the temperature range of 523 to 923 K. Total-strain-controlled fatigue tests were per-formed at a strain amplitude of +/-0.6 pct on samples possessing two different prior microstructures: microstructure A, in the solution-annealed condition (free of gamma' and carbides); and microstructure B, in a double-aged condition with gamma' of 18-nm diameter and M23C6 carbides. The cyclic stress response behavior of the alloy was found to depend on the prior microstructure, testing temperature, and strain rate. A softening regime was found to be associated with shearing of ordered gamma' that were either formed during testing or present in the prior microstructure. Various manifestations of dynamic strain aging (DSA) included negative strain rate-stress response, serrations on the stress-strain hysteresis loops, and increased work-hardening rate. The calculated activation energy matched well with that for self-diffusion of Al and Ti in the matrix. Fatigue life increased with an increase in strain rate from 3 x 10(-5) to 3 x 10(-3) s-1, but decreased with further increases in strain rate. At 723 and 823 K and low strain rates, DSA influenced the deformation and fracture behavior of the alloy. Dynamic strain aging increased the strain localization in planar slip bands, and impingement of these bands caused internal grain-boundary cracks and reduced fatigue life. However, at 923 K and low strain rates, fatigue crack initiation and propagation were accelerated by high-temperature oxidation, and the reduced fatigue life was attributed to oxidation-fatigue interaction. Fatigue life was maximum at the intermediate strain rates, where strain localization was lower. Strain localization as a function of strain rate and temperature was quantified by optical and scanning electron microscopy and correlated with fatigue life.
Resumo:
Study of fatigue phenomenon in composites requires a dynamic tool which can detect and identify different failure mechanisms involved. The tool should also be capable of monitoring the cumulative damage progression on-line. Acoustic Emission Technique has been utilized in the experimental investigations on unidirectional carbon fiber reinforced plastic (CFRP) composite specimens subjected to tension-tension fatigue. Amplitude as well as frequency distribution of Acoustic Emission (AE) signals have been studied to detect and characterize different failure mechanisms. For a quantitative measure of degradation of the material with fatigue load cycles, reduction in stiffness of the specimen has been measured intermittently. Ultrasonic imaging could give the information on the changes in the interior status of the material at different stages of fatigue life.
Resumo:
Strain controlled low cycle fatigue tests on solution annealed nitrogen modified 316L stainless steel have been conducted in air at 823 K to ascertain the influence of strain rate and strain amplitude. Effect of strain rate was examined from 3x10(-5) s(-1) to 3 x 10(-2) at a fixed strain amplitude of +/- 0.6%. The influence of strain amplitude was evaluated between +/- 0.25 % and +/- 1.0% at a constant strain rate of 3x10(-3) s(-1). The cyclic stress response at all testing conditions is characterized by an initial hardening followed by saturation. Serrated flow, a characteristic feature of dynamic strain ageing (DSA) was seen at strain rates lower than 3x10(-3) s(-1). Fatigue life was found to decrease with decrease in strain rate. The reduction in fatigue resistance is attributed mainly to the detrimental effects associated with DSA.
Resumo:
A fatigue crack growth rate study has been carried out on L-72 aluminium alloy plate specimens with and without cold worked holes. The cold worked specimens showed significantly increased fatigue life compared to unworked specimens. Computer software is developed to evaluate the stress intensity factor for non-uniform stress distributions using Green's function approach. The exponents for the Paris equation in the stable crack growth region for cold worked and unworked specimens are 1.26 and 3.15 respectively. The reduction in exponent value indicates the retardation in crack growth rate. An SEM study indicates more plastic deformation at the edge of the hole for unworked samples as compared to the worked samples during the crack initiation period.
Resumo:
In this work, a fatigue crack propagation model developed using dimensional analysis for plain concrete is used in conjunction with the steel closing force to predict the crack growth behavior of reinforced concrete beams. A numerical procedure is followed using the proposed model to compute the fatigue life of RC beams and the dissipated energy in the steel reinforcement due to shake down behavior. Through a sensitivity study, it is found that the structural size is the most sensitive parameter on which the crack growth rate is dependent. Furthermore, the moment carrying capacity of an RC beam is computed as function of crack size by considering the effect of bond slip.
Resumo:
In this work, an attempt has been made to assess the fatigue life of reinforced concrete beams, by proposing a crack propagation law which accounts for parameters such as fracture toughness, crack length, loading ratio and structural size. A numerical procedure is developed to compute fatigue life of RC beams. The predicted results are compared with the available experimental data in the literature and seen to agree reasonably well. Further, in order to assess the remaining life of an RC member, the moment carrying capacity is determined as a function of crack extension, based on the crack tip opening displacement and residual strength of the member is computed at an event of unstable fracture.