7 resultados para Fat-1

em Indian Institute of Science - Bangalore - Índia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transport of glucose and α-methyl glucoside into the fat body of the silkworm, Bombyx mori L., has been studied. Glucose is transported into the tissue by a mechanism similar to facilitated diffusion and α-methyl glucoside by a diffusion process. The uptake of these sugars is neither energy dependent nor coupled to a phosphotransferase system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INVESTIGATIONS of intestinal transport of amino-acids in the locust1,2 and silkworm3,4 have shown no evidence for active accumulation in a transport from the insect gut of amino-acids. When glycine-2-14C was administered in vivo to fifth instar larvae of the silkworm, 96 per cent of the radioactivity was incorporated into various tissues within 1 h whereas in vitro only 19 per cent of the activity was transported by the mid-gut of silkworm (unpublished work). These results suggested that continued absorption of glycine by the intestine could be aided by a facilitated diffusion mechanism in which amino-acids are rapidly removed from the site of absorption either by accumulation into other tissues or by degradation. Although the insect fat body has been assigned both accumulatory and dissimilatory roles5, the mechanism of accumulation of amino-acids has not been investigated. Our present experiments show that the silkworm fat body possesses an efficient mechanism for accumulating glycine and that both the accumulation and the release of glycine are metabolically controlled.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: This study was performed to understand the possible therapeutic activity of Terminalia paniculata ethanolic extract (TPEE) on non alcoholic fatty liver in rats fed with high fat diet. Methods: Thirty six SD rats were divided into 6 groups (n = 6): Normal control (NC), high fat diet (HFD), remaining four groups were fed on HFD along with different doses of TPEE (100,150 and 200 mg/kg b.wt) or orlistat, for ten weeks. Liver tissue was homogenized and analyzed for lipid profiles, activities of superoxide dismutase (SOD), catalase (CAT) and malondialdehyde (MDA) content. Further, the expression levels of FAS and AMPK-1 alpha were also studied in addition to histopathology examination of liver tissue in all the groups. Results: HFD significantly increased hepatic liver total cholesterol (TC), triglycerides (TG), free fatty acids (FFA) and MDA but decreased the activities of SOD and CAT which were subsequently reversed by supplementation with TPEE in a dose-dependent manner. In addition, TPEE administration significantly down regulated hepatic mRNA expression of FAS but up regulated AMPK-1 alpha compared to HFD alone fed group. Furthermore, western blot analysis of FAS has clearly demonstrated decreased expression of FAS in HFD + TPEE (200 mg/kg b. wt) treated group when compared to HFD group at protein level. Conclusions: Our biochemical studies on hepatic lipid profiles and antioxidant enzyme activities supported by histological and expression studies suggest a potential therapeutic role for TPEE in regulating obesity through FAS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The prevalence and severity of obesity and associated co-morbidities are rapidly increasing across the world. Natural products-based drug intervention has been proposed as one of the crucial strategies for management of obesity ailments. This study was designed to investigate the anti-obesity activities of ethanolic extract of Terminalia paniculata bark (TPEE) on high fat diet-induced obese rats. Methods: LC-MS/MS analysis was done for ethanolic extract of T. paniculata bark. Male Sprague-Dawley (SD) rats were randomly divided into six groups of six each, normal diet fed (NC), high fat diet-fed (HFD), HFD+ orlistat (standard drug control) administered, and remaining three groups were fed with HFD + TPEE in different doses (100,150 and 200 mg/kg b. wt). For induction of obesity rats were initially fed with HFD for 9 weeks, then, (TPEE) was supplemented along with HFD for 42 days. Changes in body weight, body composition, blood glucose, insulin, tissue and serum lipid profiles, atherogenic index, liver markers, and expression of adipogenesis-related genes such as leptin, adiponectin, FAS, PPARgamma, AMPK-1alpha and SREBP-1c, were studied in experimental rats. Also, histopathological examination of adipose tissue was carried out. Results: Supplementation of TPEE reduced significantly (P < 0.05) body weight, total fat, fat percentage, atherogenic index, blood glucose, insulin, lipid profiles and liver markers in HFD-fed groups, in a dose-dependent manner. The expression of adipogenesis-related genes such as Leptin, FAS, PPARgamma, and SREBP-1c were down regulated while Adiponectin and AMPK-1alpha were up regulated in TPEE + HFD-fed rats. Furthermore, histopathological examination of adipose tissue revealed the alleviating effect of TPEE which is evident by reduced size of adipocytes. Conclusions: Together, the biochemical, histological and molecular studies unambiguously demonstrate the potential anti adipogenic and anti obesity activities of TPEE promoting it as a formidable candidate to develop anti obesity drug.